Skip to main content
Log in

Traceability Codes and Their Generalizations

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

Codes with the identifiable “parent” property appeared as one of solutions for the broadcast encryption problem. We propose a new, more general model of such codes, give an overview of known results, and formulate some unsolved problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chor, B., Fiat, A., and Naor, M., Tracing Traitors, Advances in Cryptology—CRYPTO’94 (Proc. 14th Annual Int. Cryptology Conf., Santa Barbara, CA, USA, Aug. 21–25, 1994), Desmedt, Y.G., Ed., Lect. Notes Comp. Sci., vol. 839, Berlin: Springer, 1994, pp. 257–270.

    Google Scholar 

  2. Blakley, G.R., Safeguarding Cryptographic Keys, Proc. 1979 National Computer Conf.: Int. Workshop on Managing Requirements Knowledge, New York, June 4–7, 1979, Merwin, R.E., Zanca, J.T., and Smith, M., Eds., AFIPS Conf. Proceedings, V. 48, Montvale, NJ: AFIPS Press, 1979, pp. 313–317.

    Google Scholar 

  3. Shamir, A., How to Share a Secret, Comm. ACM, 1979, vol. 22, no. 11, pp. 612–613.

    Article  MathSciNet  Google Scholar 

  4. Hollmann, H.D.L., van Lint, J.H., Linnartz, J.-P., and Tolhuizen, L.M.G.M., On Codes with the Identifiable Parent Property, J. Combin. Theory Ser. A, 1998, vol. 82, no. 2, pp. 121–133.

    Article  MathSciNet  Google Scholar 

  5. Stinson, D.R. and Wei, R., Combinatorial Properties and Constructions of Traceability Schemes and Frameproof Codes, SIAM J. Discrete Math., 1998, vol. 11, no. 1, pp. 41–53.

    Article  MathSciNet  Google Scholar 

  6. Collins, M.J., Upper Bounds for Parent-Identifying Set Systems, Des. Codes Cryptogr., 2009, vol. 51, no. 2, pp. 167–173.

    Article  MathSciNet  Google Scholar 

  7. Egorova, E.E., Generalization of IPP Codes and IPP Set Systems, Probl. Peredachi Inf., 2019, vol. 55, no. 3, pp. 46–59 [Probl. Inf. Transm. (Engl. Transl.), 2019, vol. 55, no. 3, pp. 241–253].

    MathSciNet  MATH  Google Scholar 

  8. Blakley, G.R. and Kabatianski, G.A., Generalized Ideal Secret-Sharing Schemes and Matroids, Probl. Peredachi Inf., 1997, vol. 33, no. 3, pp. 102–110 [Probl. Inf. Transm. (Engl. Transl.), 1997, vol. 33, no. 3, pp. 277–284].

    MathSciNet  MATH  Google Scholar 

  9. Benaloh, J. and Leichter, J., Generalized Secret Sharing and Monotone Functions, Advances in Cryptology—CRYPTO’88 (Proc. 8th Annual Int. Cryptology Conf., Santa Barbara, CA, USA, Aug. 21–25, 1988), Goldwasser, S., Ed., Lect. Notes Comp. Sci., vol. 403, Berlin: Springer, 1990, pp. 27–35.

    Google Scholar 

  10. Ito, M., Saito, A., and Nishizeki, T., Secret Sharing Scheme Realizing General Access Structure, Electron. Comm. Japan Part III Fund. Electron. Sci., 1989, vol. 72, no. 9, pp. 56–63.

    Article  MathSciNet  Google Scholar 

  11. Egorova, E. and Kabatiansky, G., PatAnalysis of Two Tracing Traitor Schemes via Coding Theory, Coding Theory and Applications (Proc. 5th Int. Castle Meeting, ICMCTA 2017, Vihula, Estonia, Aug. 28–31, 2017), Barbero, A.I., Skachek, V., and Ytrehus, Ø, Eds., Lect. Notes Comp. Sci., vol. 10495, Cham: Springer, 2017, pp. 84–92.

    Google Scholar 

  12. Sagalovich, Yu.L., Separating Systems, Probl. Peredachi Inf., 1994, vol. 30, no. 2, pp. 14–35 [Probl. Inf. Transm. (Engl. Transl.), 1994, vol. 30, no. 2, pp. 105–123].

    MathSciNet  MATH  Google Scholar 

  13. Cohen, G.D. and Schaathun, H.G., Asymptotic Overview on Separating Codes, Tech. Rep. of Dept. of Informatics, Univ. of Bergen, Bergen, Norway, 2003, no. 248.

    Google Scholar 

  14. Bassalygo, L.A., Burmester, M., Dyachkov, A., and Kabatianskii, G., Hash Codes, in Proc. 1997 IEEE Int. Sympos. on Information Theory (ISIT’97), Ulm, Germany, June 29–July 4, 1997, p. 174.

    Google Scholar 

  15. Kabatiansky, G.A., Codes for Copyright Protection: The Case of Two Pirates, Probl. Peredachi Inf., 2005, vol. 41, no. 2, pp. 123–127 [Probl. Inf. Transm. (Engl. Transl.), 2005, vol. 41, no. 2, pp. 182–186].

    MathSciNet  Google Scholar 

  16. Fernandez, M., Cotrina J., Soriano, M., and Domingo, N., A Note about the Identifier Parent Property in Reed–Solomon Codes, Comput. Secur., 2010, vol. 29, no. 5, pp. 628–635.

    Article  Google Scholar 

  17. Barg, A., Cohen, G., Encheva, S., Kabatiansky, G., and Z´emor, G., A Hypergraph Approach to the Identifying Parent Property: The Case of Multiple Parents, SIAM J. Discrete Math., 2001, vol. 14, no. 3, pp. 423–431.

    Article  MathSciNet  Google Scholar 

  18. Alon, N., Cohen, G., Krivelevich, M., and Litsyn, S., Generalized Hashing and Parent-Identifying Codes, J. Combin. Theory Ser. A, 2003, vol. 104, no. 1, pp. 207–215.

    Article  MathSciNet  Google Scholar 

  19. Vorob’ev, I.V., Probl. Peredachi Inf., 2017, vol. 53, no. 1, pp. 34–46 [Probl. Inf. Transm. (Engl. Transl.), 2017, vol. 53, no. 1, pp. 30-41].

    MathSciNet  Google Scholar 

  20. Blackburn, S.R., Etzion, T., and Ng, S.-L., Traceability Codes, J. Combin. Theory Ser. A, 2010, vol. 117, no. 8, pp. 1049–1057.

    Article  MathSciNet  Google Scholar 

  21. Erdős, P., Frankl, P., and Füredi, Z., Families of Finite Sets in Which No Set Is Covered by the Union of Two Others, J. Combin. Theory Ser. A, 1982, vol. 33, no. 2, pp. 158–166.

    Article  MathSciNet  Google Scholar 

  22. Erdős, P., Frankl, P., and Füredi, Z., Families of Finite Sets in Which No Set Is Covered by the Union of r Others, Israel J. Math., 1985, vol. 51, no. 1–2, pp. 79–89.

    Article  MathSciNet  Google Scholar 

  23. Kautz, W.H. and Singleton, R.C., Nonrandom Binary Superimposed Codes, IEEE Trans. Inform. Theory, 1964, vol. 10, no. 4, pp. 363–377.

    Article  Google Scholar 

  24. D’yachkov, A.G. and Rykov, V.V., Bounds on the Length of Disjunctive Codes, Probl. Peredachi Inf., 1982, vol. 18, no. 3, pp. 7–13 [Probl. Inf. Transm. (Engl. Transl.), 1982, vol. 18, no. 3, pp. 166–171].

    MathSciNet  MATH  Google Scholar 

  25. Levenshtein, V.I., Upper-Bound Estimates for Fixed-Weight Codes, Probl. Peredachi Inf., 1971, vol. 7, no. 4, pp. 3–12 [Probl. Inf. Transm. (Engl. Transl.), 1971, vol. 7, no. 4, pp. 281–287].

    MATH  Google Scholar 

  26. Gu, Y. and Miao, Y., Bounds on Traceability Schemes, IEEE Trans. Inform. Theory, 2018, vol. 64, no. 5, pp. 3450–3460.

    Article  MathSciNet  Google Scholar 

  27. Blackburn, S.R., Combinatorial Schemes for Protecting Digital Content, Surveys in Combinatorics, 2003 (Proc. 19th British Combinatorial Conf., Univ. of Wales, Bangor, UK, June 29–July 4, 2003), Wensley, C.D., Ed., Lond. Math. Soc. Lect. Note Ser., vol. 307, Cambridge, UK: Cambridge Univ. Press, 2003, pp. 43–78.

    Google Scholar 

  28. Barg, A. and Kabatiansky, G., A Class of I.P.P. Codes with Efficient Identification, J. Complexity, 2004, vol. 20, no. 2–3, pp. 137–147.

    Article  MathSciNet  Google Scholar 

  29. Egorova, E., Fernandez, M., and Kabatiansky, G., A Construction of Traceability Set Systems with Polynomial Tracing Algorithm, to appear in Proc. 2019 IEEE Int. Sympos. on Information Theory (ISIT’2019), Paris, France, July 7–12, 2019.

    Google Scholar 

  30. Tsfasman, M.A., Vlˇadu¸t, S.G., and Nogin, D.Yu., Algebraic Geometric Codes: Basic Notions, Providence, R.I.: Amer. Math. Soc., 2007.

    Book  Google Scholar 

  31. Guruswami, V., List Decoding of Error-Correcting Codes (Winning Thesis of the 2002 ACM Doct. Diss. Competition), Lect. Notes Comp. Sci., vol. 3282. Berlin: Springer, 2004.

    MATH  Google Scholar 

  32. Ericson, T. and Zinoviev, V.A., An Improvement of the Gilbert Bound for Constant Weight Codes, IEEE Trans. Inform. Theory, 1987, vol. 33, no. 5, pp. 721–723.

    Article  MathSciNet  Google Scholar 

  33. Boneh, D. and Shaw, J., Collusion-Secure Fingerprinting for Digital Data, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 5, pp. 1897–1905.

    Article  MathSciNet  Google Scholar 

  34. Barg, A., Blakley, G.R., and Kabatiansky, G.A., Digital Fingerprinting Codes: Problem Statements, Constructions, Identification of Traitors, IEEE Trans. Inform. Theory, 2003, vol. 49, no. 4, pp. 852–865.

    Article  MathSciNet  Google Scholar 

  35. Tardos, G., Optimal Probabilistic Fingerprint Codes, in Proc. 35th Annual ACM Sympos. on Theory of Computing (STOC’03), San Diego, CA, USA, June 9–11, 2003, pp. 116–125.

    Google Scholar 

  36. Fernandez, M., Kabatiansky, G., and Moreira, J., Almost IPP-Codes or Provably Secure Digital Fingerprinting Codes, in Proc. 2015 IEEE Int. Sympos. on Information Theory (ISIT’2015), Hong Kong, China, June 14–19, 2015, pp. 1595–1599.

    Chapter  Google Scholar 

  37. Fernandez, M., Egorova, E., and Kabatiansky, G., Binary Fingerprinting Codes — Can We Prove that Someone Is Guilty?!, in Proc. 2015 IEEE Int. Workshop on Information Forensics and Security (WIFS’2015), Rome, Italy, Nov. 16–19, 2015, pp. 1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kabatiansky.

Additional information

Russian Text © The Author(s), 2019, published in Problemy Peredachi Informatsii, 2019, Vol. 55, No. 3, pp. 93–105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabatiansky, G.A. Traceability Codes and Their Generalizations. Probl Inf Transm 55, 283–294 (2019). https://doi.org/10.1134/S0032946019030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946019030074

Key words

Navigation