Skip to main content
Log in

Affine Variety Codes over a Hyperelliptic Curve

  • CODING THEORY
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We estimate the minimum distance of primary monomial affine variety codes defined from a hyperelliptic curve \({x^5} + x - {y^2}\) over \(\mathbb{F}_7\). To estimate the minimum distance of the codes, we apply symbolic computations implementing the techniques suggested by Geil and Özbudak. For some of these codes, we also obtain the symbol-pair distance. Furthermore, lower bounds on the generalized Hamming weights of the constructed codes are obtained. The proposed method to calculate the generalized Hamming weights can be applied to any primary monomial affine variety codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fitzgerald, J. and Lax, R.F., Decoding Affine Variety Codes Using Gröbner Bases, Des. Codes Cryptogr., 1998, vol. 13, no. 2, pp. 147–158. https://doi.org/10.1023/A:1008274212057

    Article  MathSciNet  Google Scholar 

  2. Geil, O., Evaluation Codes from an Affine Variety Code Perspective, Advances in Algebraic Geometry Codes, Martínez-Moro, E., Munuera, C., and Ruano, D., Eds., Singapore: World Sci., 2008, pp. 153–180. https://doi.org/10.1142/9789812794017_0004

  3. Andersen, H.E. and Geil, O., Evaluation Codes from Order Domain Theory, Finite Fields Appl., 2008, vol. 14, no. 1, pp. 92–123. https://doi.org/10.1016/j.ffa.2006.12.004

    Article  MathSciNet  Google Scholar 

  4. Geil, O. and Özbudak, F., On Affine Variety Codes from the Klein Quartic, Cryptogr. Commun., 2019, vol. 11, no. 2, pp. 237–257. https://doi.org/10.1007/s12095-018-0285-6

    Article  MathSciNet  Google Scholar 

  5. Patanker, N. and Singh, S.K., Quaternary Affine Variety Codes over a Klein-like Curve, Preprint, 2020.

  6. Wei, V.K., Generalized Hamming Weights for Linear Codes, IEEE Trans. Inform. Theory, 1991, vol. 37, no. 5, pp. 1412–1418. https://doi.org/10.1109/18.133259

    Article  MathSciNet  Google Scholar 

  7. Grassl, M., Bounds on the Minimum Distance of Linear Codes and Quantum Codes (electronic tables). Available online at http://www.codetables.de.

  8. Cassuto, Y. and Blaum, M., Codes for Symbol-Pair Read Channels, IEEE Trans. Inform. Theory, 2011, vol. 57, no. 12, pp. 8011–8020. https://doi.org/10.1109/TIT.2011.2164891

    Article  MathSciNet  Google Scholar 

  9. Helleseth, T., Kløve, T., and Mykkelveit, J., The Weight Distribution of Irreducible Cyclic Codes with Block Lengths n1((ql − 1)/N), Discrete Math., 1977, vol. 18, no. 2, pp. 179–211. https://doi.org/10.1016/0012-365X(77)90078-4

    Article  MathSciNet  Google Scholar 

  10. Kløve, T., The Weight Distribution of Linear Codes over GF(ql) Having Generator Matrix over GF(q), Discrete Math., 1978, vol. 23, no. 2, pp. 159–168. https://doi.org/10.1016/0012-365X(78)90114-0

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewer for his/her comments and suggestions, which help to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2021, Vol. 57, No. 1, pp. 96–111 https://doi.org/10.31857/S0555292321010058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patanker, N., Singh, S.K. Affine Variety Codes over a Hyperelliptic Curve. Probl Inf Transm 57, 84–97 (2021). https://doi.org/10.1134/S0032946021010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946021010051

keywords