Skip to main content
Log in

Counting the Number of Perfect Matchings, and Generalized Decision Trees

  • LARGE SYSTEMS
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We consider a generalization of the Pólya–Kasteleyn approach to counting the number of perfect matchings in a graph based on computing the symbolic Pfaffian of a directed adjacency matrix of the graph. Complexity of algorithms based on this approach is related to the complexity of the sign function of a perfect matching in generalized decision tree models. We obtain lower bounds on the complexity of the sign of a perfect matching in terms of the deterministic communication complexity of the XOR sign function of a matching. These bounds demonstrate limitations of the symbolic Pfaffian method for both the general case and the case of sparse graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Of course, we may use arbitrary polynomials as factors. However, no way to apply this more general construction is seen so far. Therefore, we confine ourselves with monomials here.

  2. Informally, the sense of the logarithmic factor is to reduce the general model to a model with queries admitting binary answers.

References

  1. Valiant, L.G., The Complexity of Computing the Permanent, Theoret. Comput.Sci., 1979, vol. 8, no. 2, pp. 189–201. https://doi.org/10.1016/0304-3975(79)90044-6

    Article  MathSciNet  Google Scholar 

  2. Björklund, A., Counting Perfect Matchings as Fast as Ryser, in Proc. 23rd Annu. ACM–SIAM Symp. on Discrete Algorithms (SODA'2012), Kyoto, Japan, Jan. 17–19, 2012, pp. 914–921. https://dl.acm.org/doi/10.5555/2095116.2095189

  3. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., and Wahlén, M., Exponential Time Complexity of the Permanent and the Tutte Polynomial, ACM Trans. Algorithms, 2014, vol. 10, no. 4, Art. 21 (32 pp.). https://doi.org/10.1145/2635812

    Article  MathSciNet  Google Scholar 

  4. Kasteleyn, P., Graph Theory and Crystal Physics, Graph Theory and Theoretical Physics, Harary, F., Ed., London: Academic, 1967, pp. 43–110.

  5. Galluccio, A. and Loebl, M., On the Theory of Pfaffian Orientations. I: Perfect Matchings and Permanents, Electron. J. Combin., 1999, vol. 6, Art. R6 (18 pp.). https://doi.org/10.37236/1438

    MathSciNet  MATH  Google Scholar 

  6. Tesler, G., Matchings in Graphs on Non-orientable Surfaces, J. Combin. Theory Ser. B, 2000, vol. 78, no. 2, pp. 198–231. https://doi.org/10.1006/jctb.1999.1941

    Article  MathSciNet  Google Scholar 

  7. Little, C.H.C., An Extension of Kasteleyn’s Method of Enumerating the 1-Factors of Planar Graphs, Combinatorial Mathematics II, Holton, D.A., Ed., Lect. Notes Math., vol. 403, Berlin: Springer, 1974, pp. 63–72. https://doi.org/10.1007/BFb0057377

    Article  MathSciNet  Google Scholar 

  8. Straub, S., Thierauf, T., and Wagner, F., Counting the Number of Perfect Matchings in \(K_5\)-Free Graphs, Theory Comput. Syst., 2016, vol. 59, no. 3, pp. 416–439. https://doi.org/10.1007/s00224-015-9645-1

    Article  MathSciNet  Google Scholar 

  9. Izumi, T. and Wadayama, T., A New Direction for Counting Perfect Matchings, in Proc. 2012 IEEE 53rd Annu. Symp. on Foundations of Computer Science (FOCS'2012), New Brunswick, NJ, USA, Oct. 20–23, 2012, pp. 591–598. https://doi.org/10.1109/FOCS.2012.28

  10. Pólya, G., Aufgabe 424, Arch. Math. Phys. (3), 1913, vol. 20, pp. 271.

    Google Scholar 

  11. Babenko, A.V. and Vyalyi, M.N., On the Linear Classification of Even and Odd Permutation Matrices and the Complexity of Computing the Permanent, Zh. Vychisl. Mat. Mat. Fiz., 2017, vol. 57, no. 2, pp. 362–372 [Comput. Math. Math. Phys. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 362–371]. https://doi.org/10.1134/S0965542517020038

    MathSciNet  MATH  Google Scholar 

  12. Vyalyi, M.N., Complexity of Computation of a Permutation Sign in a Decision Tree Model and Counting Perfect Matchings in Bipartite Graphs, Tr. X mezhdunar. konf. “Diskretnye modeli v teorii upravlyayushchikh sistem” (Proc. X Int. Conf. “Discrete Models in Control Systems Theory”, Moscow Area, May 23–25, 2018), Alekseev, V., Romanov, D., and Danilov B., Eds., Moscow: MAKS Press, 2018, pp. 94–97.

  13. Mahajan, M. and Vinay, V., Determinant: Old Algorithms, New Insights, SIAM J.Discrete Math., 1999, vol. 12, no. 4, pp. 474–490. https://doi.org/10.1137/S0895480198338827

    Article  MathSciNet  Google Scholar 

  14. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

    Book  Google Scholar 

  15. Vinberg, E.B., Kurs algebry (A Course in Algebra), Moscow: Faktorial, 1999.

  16. Mahajan, M., Subramanya, P.R., and Vinay, V., A Combinatorial Algorithm for Pfaffians, Proc. 5th Annu. Int. Conf. on Computing and Combinatorics (COCOON'99), Tokyo, Japan, July 26–28, 1999, Asano, T., Imai, H., Lee, D.T., Nakano, S.-I., and Tokuyama, T., Eds., Lect. Notes Comput. Sci., vol. 1627, Berlin: Springer, 1999, pp. 134–143. https://doi.org/10.1007/3-540-48686-0_13

  17. Little, C.H.C., A Characterization of Convertible \((0,1)\)-Matrices, J. Combin. Theory Ser. B, 1975, vol. 18, no. 3, pp. 187–208. https://doi.org/10.1016/0095-8956(75)90048-9

    Article  MathSciNet  Google Scholar 

  18. Thomas, R. and Whalen, P., Odd \(K_{3,3}\) Subdivisions in Bipartite Graphs, J. Combin. Theory Ser. B, 2016, vol. 118, pp. 76–87. https://doi.org/10.1016/j.jctb.2016.01.005

    Article  MathSciNet  Google Scholar 

  19. Robertson, N., Seymour, P.D., and Thomas, R., Permanents, Pfaffian Orientations, and Even Directed Circuits, Ann. of Math. (2), 1999, vol. 150, no. 3, pp. 929–975. https://doi.org/10.2307/121059

    Article  MathSciNet  Google Scholar 

  20. Jukna, S., Boolean Function Complexity: Advances and Frontiers, Heidelberg: Springer, 2012.

    Book  Google Scholar 

  21. Kushilevitz, E. and Nisan, N., Communication Complexity, Cambridge: Cambridge Univ. Press, 1997.

    MATH  Google Scholar 

  22. Lee, T. and Shraibman, A., Lower Bounds in Communication Complexity, Found. Trends Theor. Comput. Sci., 2009, vol. 3, no. 4, pp. 263–399. https://doi.org/10.1561/0400000040

    Article  MathSciNet  Google Scholar 

  23. Zhang, Z. and Shi, Y., On the Parity Complexity Measures of Boolean Functions, Theoret. Comput. Sci., 2010, vol. 411, no. 26–28, pp. 2612–2618. https://doi.org/10.1016/j.tcs.2010.03.027

    Article  MathSciNet  Google Scholar 

  24. Lee, T. and Zhang, S., Composition Theorems in Communication Complexity, Proc. 37th Int. Colloq. on Automata, Languages and Programming (ICALP'2010), Bordeaux, France, July 6–10, 2010, Part I, Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., and Spirakis, P.G., Eds., Lect. Notes Comput. Sci., vol. 6198, Berlin: Springer, 2010, pp. 475–489. https://doi.org/10.1007/978-3-642-14165-2_41

  25. Tsang, H.Y., Wong, C.H., Xie, N., and Zhang, S., Fourier Sparsity, Spectral Norm, and the Log-Rank Conjecture, Proc. 2013 IEEE 54th Annu. Symp. on Foundations of Computer Science (FOCS’2013), Berkeley, CA, USA, Oct. 26–29, 2013, pp. 658–667. https://doi.org/10.1109/FOCS.2013.76

  26. Hatami, H., Hosseini, K., and Lovett, S., Structure of Protocols for XOR Functions, in Proc. 2016 IEEE 57th Annu. Symp. on Foundations of Computer Science (FOCS’2016), New Brunswick, NJ, USA, Oct. 9–11, 2016, pp. 282–288. https://doi.org/10.1109/FOCS.2016.38

  27. O’Donnell, R., Analysis of Boolean Functions, New York: Cambridge Univ. Press, 2014.

    Book  Google Scholar 

Download references

Funding

The research was carried out at the expense of the Russian Science Foundation, project no. 20-11-20203.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2021, Vol. 57, No. 2, pp. 51–70 https://doi.org/10.31857/S0555292321020042.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyalyi, M. Counting the Number of Perfect Matchings, and Generalized Decision Trees. Probl Inf Transm 57, 143–160 (2021). https://doi.org/10.1134/S0032946021020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946021020046

keywords

Navigation