Skip to main content
Log in

Execution and optimization techniques for approximate queries in heterogeneous systems

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

High-level queries can be used for describing scenarios of complicated analytical processing in environments of distributed heterogeneous information resources. Simultaneous abrupt increase in volume and variety of data types available for mass processing in information networks and toughening of requirements on time spent for analyzing them resulted in the need of revising the known query execution and optimization methods. In this survey, approaches to the execution and optimization of high-level precise and approximate queries are considered; unresolved problems and possible ways to solve them are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gray, J., The next database revolution, Proceedings of the ACM SIGMOD Int. Conf. on Management of Data (Paris, 2004), Weikum, G., König, A.C., and Deßloch, S., Eds., ACM, 2004, pp. 1–4.

    Google Scholar 

  2. Graefe, G., Query evaluation techniques for large databases, ACM Comput. Surv., 1993, vol. 25, no. 2, pp. 73–170.

    Article  Google Scholar 

  3. Codd, E.F., A relational model of data for large shared data banks, Commun. ACM, 1970, vol. 13, no. 6, pp. 377–387.

    Article  MATH  Google Scholar 

  4. Darwen, H. and Date, C.J., The third manifesto, SIGMOD Record, 1995, vol. 24, no. 1, pp. 39–49.

    Article  Google Scholar 

  5. Ioannidis, Y.E., Query optimization, ACM Comput. Surv., 1996, vol. 28, no. 1, pp. 121–123.

    Article  Google Scholar 

  6. Steinbrunn, M., Moerkotte, G., and Kemper, A., Heuristic and randomized optimization for the join ordering problem, VLDBJ, 1997, vol. 6, no. 3, pp. 191–208.

    Article  Google Scholar 

  7. Ioannidis, Y.E., The history of histograms (abridged), VLDB, 2003, pp. 19–30.

    Google Scholar 

  8. Kossmann, D. and Stocker, K., Iterative dynamic programming: a new class of query optimization algorithms, ACM Trans. Database Syst., 2000, vol. 25, no. 1, pp. 43–82.

    Article  Google Scholar 

  9. Chaudhuri, S., Ramakrishnan, R., and Weikum, G., Integrating db and ir technologies: What is the sound of one hand clapping, CIDR, 2005, pp. 1–12.

    Google Scholar 

  10. Adali, S., Bonatti, P., Sapino, M.L., and Subrahmanian, V.S., A multi-similarity algebra, Proc. of the 1998 ACM SIGMOD Int. Conf. on management of data, SIGMOD’98, 1998, pp. 402–413, New York, 1998.

    Google Scholar 

  11. Montesi, D., Trombettam, A., and Dearnley, P.A., A similarity based relational algebra for web and multimedia data, Inf. Process. Manag., 2003, vol. 39, no. 2, pp. 307–322.

    Article  MATH  Google Scholar 

  12. Ciaccia, P., Montesi, D., Penzo, W., and Trombettam, A., Imprecision and user preferences in multimedia queries: A generic algebraic approach, Proc. of the-First Int. Symposium on Foundations of Information and Knowledge Systems, FoIKS’00, London, 2000, pp. 50–71.

    Chapter  Google Scholar 

  13. Schmitt, I. and Schulz, N., Similarity relational calculus and its reduction to a similarity algebra, Lecture Notes in Computer Science, 2004, vol. 2942, pp. 252–272.

    Article  Google Scholar 

  14. Atnafu, S., Brunie, L., and Kosch, H., Similarity-based algebra for multimedia database systems, Proc of ADC, 2001, pp. 115–122.

    Google Scholar 

  15. Budíková, P., Batko, M., and Zezula, P., Query language for complex similarity queries, Lecture Notes in Computer Science, 2012, vol. 7503, pp. 85–98.

    Article  Google Scholar 

  16. Li, C., Chen-Chuan Chang, K., Ilyas, I.F., and Song, S., Ranksql: Query algebra and optimization for relational top-k queries, Proc. of SIGMOD Conf., 2005, pp. 131–142.

    Google Scholar 

  17. Fagin, R., Fuzzy queries in multimedia database systems. Proc. of the seventeenth ACM SIGACT-SIGMODSIGART Symposium on Principles of database systems, PODS’98, New York, 1998, pp. 1–10.

    Chapter  Google Scholar 

  18. Fagin, R. and Wimmers, E.L., A formula for incorporating weights into scoring rules, Theor. Comput. Sci., 2000, vol. 239, no. 2, pp. 309–338.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hu, Y., Sundara, S., and Srinivasan, J., Supporting time-constrained sql queries in Oracle, Proc. of the 33d Int. Conf. on Very Large Data Bases, VLDB’07, Endowment, 2007, pp. 1207–1218.

    Google Scholar 

  20. Babcock, B., Chaudhuri, S., and Das, G., Dynamic sample selection for approximate query processing, Proc. of the 2003 ACM SIGMOD Int. Conf. on Management of Data, SIGMOD’03, New York, 2003, pp. 539–550.

    Chapter  Google Scholar 

  21. Dell’Aquila, C., DiTria, F., Lefons, E., and Tangorra, F., Accuracy estimation in approximate query processing, Proc. of the 14th WSEAS Int. Conf. on Computers: Part of the 14th WSEAS CSCC Multiconference, ICCOMP’10, Stevens Point, Wisconsin, 2010, vol. II, pp. 452–458.

    Google Scholar 

  22. Chaudhuri, S., Das, G., and Narasayya, V., Optimized stratified sampling for approximate query processing, ACM Trans. Database Syst., 2007, vol. 32.

  23. Jermaine, C., Arumugam, S., Pol, A., and Dobra, A., Scalable approximate query processing with the dbo engine, ACM Trans. Database Syst., 2008, vol. 33, pp. 1–23.

    Article  Google Scholar 

  24. Fagin, R., Lotem, A., and Naor, M., Optimal aggregation algorithms for middleware, J. Comput. Syst. Sci., 2003, vol. 66, no. 4, pp. 614–656.

    Article  MATH  MathSciNet  Google Scholar 

  25. Theobald, M., Weikum, G., and Schenkel, R., Top-k query evaluation with probabilistic guarantees, VLDB, Nascimento, M.A., Ozsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., and Schiefer, K.B., Eds., Morgan Kaufmann, 2004, pp. 648–659.

    Google Scholar 

  26. Arai, B., Das, G., Gunopulos, D., and Koudas, N., Anytime measures for top-k algorithms, VLDB, Koch, C., Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A., Florescu, D., Chan, C.Y., Ganti, V., Kanne, C.-C., Klas, W., and Neuhold, E.J., Eds., ACM, 2007, pp. 914–925.

    Google Scholar 

  27. Braga, D., Campi, A., Ceri, S., and Raffio, A., Joining the results of heterogeneous search engines, Inf. Syst., 2008., vol. 33, nos. 7–8, pp. 658–680.

    Article  Google Scholar 

  28. Deshpande, A., Ives, Z.G., and Raman, V., Adaptive query processing, Foundations Trends Databases, 2007, vol. 1, no. 1, pp. 1–140.

    Article  MATH  Google Scholar 

  29. Babu, S., Bizarro, P., and DeWitt, D., Proactive reoptimization, Proc. of the 2005 ACM SIGMOD Int. Conf. on Management of Data, SIGMOD’05, New York, 2005, pp. 107–118.

    Chapter  Google Scholar 

  30. Eurviriyanukul, K., Paton, N.W., Fernandes, A.A.A., and Lynden, S.J., Adaptive join processing in pipelined plans, Proc. of the 13th Int. Conf. on Extending Database Technology, EDBT’10, New York, 2010, pp. 183–194.

    Chapter  Google Scholar 

  31. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., and Cilimdzic, M., Robust query processing through progressive optimization, Proc. of the 2004 ACM SIGMOD Int. Conf. on Management of data, SIGMOD’04, New York, 2004, pp. 659–670.

    Chapter  Google Scholar 

  32. Graefe, G., New algorithms for join and grouping operations, Comput. Sci., 2012, vol. 27, no. 1, pp. 3–27.

    Google Scholar 

  33. Lengu, R., Missier, P., Fernandes, A.A.A., Guerrini, G., and Mesiti, M., Time-completeness trade-offs in record linkage using adaptive query processing, Proceedings of the 12th Int. Conf. on Extending Database Technology, EDBT2009 (Saint Petersburg, 2009), Kersten, M.L., Novikov, B., Teubner, J., Polutin, V., and Manegold, S., Eds., ACM, 2009, pp. 851–861.

    Google Scholar 

  34. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., and Vitter, J.S., Adaptive rankaware query optimization in relational databases, ACM Trans. Database Syst., 2006, vol. 31, no. 4, pp. 1257–1304.

    Article  Google Scholar 

  35. Farag, F., Hammad, M.A., and Alhajj, R., Adaptive query processing in data stream management systems under limited memory resources, PIKM, Nica, A. and Varde, A.S., Eds., ACM, 2010, pp. 9–16.

    Chapter  Google Scholar 

  36. Proceedings of the 12th Int. Conf. on Extending Database Technology, EDBT2009 (Saint Petersburg, 2009), Kersten, M.L., Novikov, B., Teubner, J., Polutin, V., and Manegold, S., Eds., ACM, 2009.

    Google Scholar 

  37. Ilyas, I.F., Shah, R., Aref, W.G., Vitter, J.S., and Elmagarmid, A.K., Rank-aware query optimization, Proceedings of the ACM SIGMOD Int. Conf. on Management of Data (Paris, 2004), Weikum, G., König, A.C., and Deßloch, S., Eds., ACM, 2004, pp. 203–214.

    Google Scholar 

  38. Proceedings of the ACM SIGMOD Int. Conf. on Management of Data (Paris, 2004), Weikum, G., König, A.C., and Deßloch, S., Eds., ACM, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yarygina.

Additional information

Original Russian Text © A. Yarygina, 2013, published in Programmirovanie, 2013, Vol. 39, No. 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarygina, A. Execution and optimization techniques for approximate queries in heterogeneous systems. Program Comput Soft 39, 309–317 (2013). https://doi.org/10.1134/S0361768813060066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768813060066

Keywords

Navigation