Skip to main content
Log in

Computation of the Resonance Set of a Polynomial under Constraints on Its Coefficients

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Methods for computing the generalized discriminant set of a polynomial the roots of which satisfy a linear relation are considered. Using a q-analog of the classical elimination theory and computer algebra algorithms, methods for computing the parametric representation of this set are described, and these methods are implemented in a Maple library. The operation of these methods is demonstrated by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Batkhin A. B., Bruno A. D., and Varin V. P. Stability sets of multiparameter Hamiltonian systems, J. Appl. Math. Mech. 2012, vol. 76, no. 1, pp. 56–92. https://doi.org/10.1016/j.jappmathmech.2012.03.006

  2. Batkhin, A.B., Structure of the discriminant set of real polynomial, Chebyshev. Sb., 2015, vol. 16, no. 2, pp. 23–34. http://mi.mathnet.ru/eng/cheb/v16/i2/p23

  3. Batkhin, A.B., Parametrization of the discriminant set of a real polynomial, Preprint No. 76, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2015).

  4. Batkhin, A.B., Parameterization of the discriminant set of a polynomial, Program. Comput. Software, 2016, vol. 42, no. 2, pp. 67–76.

    Article  MathSciNet  MATH  Google Scholar 

  5. Batkhin, A.B., On the structure of the resonance set of the real polynomial, Chebyshov Sb. (Tula),2016, vol. 17, no. 3, pp. 5–17.

    MathSciNet  Google Scholar 

  6. Batkhin, A.B., The structure of the resonance set of a real polynomial, Preprint No. 29, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2015).

  7. Batkhin, A.B., Resonance set of a polynomial and the formal stability problem, Vestn. Volgograd Gos. Univ., Ser. Mat., Fiz., 2016, vol. 35, no. 4, pp. 5–23.

    MathSciNet  Google Scholar 

  8. Batkhin, A.B., Parameterization of a set determined by the generalized discriminant of a polynomial, Program. Comput. Software, 2018, vol. 44, no. 2, pp. 75–85.

    Article  MathSciNet  Google Scholar 

  9. Hahn W. Über Orthogonalpolynome, die \(q\)–Differenzengleichungen genügen, Mathematische Nachrichten, 1949, no. 2, pp. 4–34.

  10. von zur Gathen, J. and Lücking, T., Subresultants revisited, Theor. Comput. Sci., 2003, vol. 297, pp. 199–239.

    Article  MathSciNet  MATH  Google Scholar 

  11. Meurer, A., Smith, C.P., Paprocki, M., et al., SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 2017, vol. 3, e103. https://doi.org/10.7717/peerjcs.103

    Article  Google Scholar 

  12. Markeev, A.P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike (Libration Points in Astrodynamics), Moscow: Nauka, 1978.

  13. Zhuravlev, V.F., Petrov, A.G., and Shunderyuk, M.M., Izbrannye zadachi gamil’tonovoi mekhaniki (Selected Problems in Hamiltonian Mechanics), Moscow: LENAND, 2015.

  14. Edneral V.F., Kryukov, A.P., and Rodionov, A.Ya., Yazyk analiticheskikh vychislenii REDUCE (Language for Analytical Computations REDUCE), Moscow: Mosc. Gos. Univ., 1989.

  15. Shevchenko, I.I., A study of stability and chaotic behavior in celestial mechanics, Doctoral (Phys. Math.) Dissertation, St. Petersburg, State Institute of Astronomy, Russian Academy of Sciences, 2000, p. 257.

  16. Wolfram, S., The Mathematica Book, Wolfram Media, 2003.

    MATH  Google Scholar 

  17. Thompson, I., Understanding Maple, Cambridge: Cambridge Univ. Press, 2016.

    MATH  Google Scholar 

  18. Prokopenya, A.N., Hamiltonian normalization in the restricted many-body problem by computer algebra methods, Program. Comput. Software, 2012, vol. 38, no. 3, pp. 156–169.

    Article  MathSciNet  MATH  Google Scholar 

  19. Shunderyuk, M.M., Application of the invariant normalization method for constructing asymptotic solutions of certain Hamiltonian mechanics problems, Doctoral (Phys. Math.) Dissertation, Moscow: Inst. of Problems in Mechanics, Russian Academy of Sciences, 2014, p. 113.

  20. Burbanks, A.D., Wiggins, S., Waalkens, H., and Schubert, R., Background and Documentation of Software for Computing Hamiltonian Normal Forms, BS8 1TW, Bristol: Univ. of Bristol, School of Mathematics, 2008.

  21. Kalinina, E.A. and Uteshev, A.Yu., Elimination Theory, St. Petersburg: Naucho-Issledovatel’skii Inst. Khimii, St. Petersburg Univ., 2002 [in Russian].

    Google Scholar 

  22. Batkhin, A.B., Computation of the generalized discriminant of a real polynomial, Preprint of the Keldysh Institute of Applied Mathematics, Moscow, 2017. No. 88.

  23. Prasolov, V.V., Polynomials, vol. 11 of Algorithms and Computation in Mathematics, Berlin: Springer, 2004

  24. Cox D., Little J., and O’Shea D., Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, New York: Springer, 2007, 3rd ed.

    MATH  Google Scholar 

  25. Herrmann G. and Jong I.-C. On the destabilizing effect of damping in nonconservative elastic systems, Trans. AMSE, J. Appl. Mech . 1965, vol. 32, pp. 592–597.

    Article  MathSciNet  Google Scholar 

  26. Mailybaev, A.A. and Seiranyan, A.P., Mnogoparametricheskie zadachi ustoichivosti. Teoriya i prilozheniya v mekhanike (Multiparameter Stability Problems: Theory and Applications in Mechanics), Moscow: Fizmatlit, 2009.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00422а.

I am grateful to the reviewer whose useful remarks helped improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Batkhin.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batkhin, A.B. Computation of the Resonance Set of a Polynomial under Constraints on Its Coefficients. Program Comput Soft 45, 27–36 (2019). https://doi.org/10.1134/S0361768819020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768819020038