Skip to main content
Log in

Computation of the Fundamental Units of Number Rings Using a Generalized Continued Fraction

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

A global generalization of continued fraction is proposed. It is based on computer algebra and can be used to find the best Diophantine approximations. This generalization provides a basis for computing the fundamental units of algebraic rings and for finding all solutions of a class of Diophantine equations. Examples in dimensions two, three, and four are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Borevich, Z.I. and Shafarevich, I.R., Number Theory, New York: Academic Press, 1966.

    MATH  Google Scholar 

  2. Voronoi, G.F., On a Generalization of the Continued Fraction Algorithm, Warsaw : Warsaw Univ. Press, 1896.

    Google Scholar 

  3. Parusnikov, V.I., A four-dimensional generalization of the continued fraction algorithm, Preprint No. 78, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2011). http://library. keldysh.ru/preprint.asp?id =2011-78

  4. Khinchin, A.Ya., Continued Fractions, Mineola, NY: Dover, 1997.

    MATH  Google Scholar 

  5. Bruno, A.D., Expansions of algebraic numbers in continued fractions, USSR Comput. Math. Phys., 1964, vol. 4, no. 2, pp. 1–15.

    Article  Google Scholar 

  6. Bruno, A.D., New generalizations of continued fraction. I, Functiones Approximatio, 2010, vol. 43, no. 1, pp. 55–104.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruno, A.D., A universal generalization of the continued fraction, Cebyshev Sb. (Tula), 2015, vol. 16, no. 2, pp. 35–65. [in Russian]

    MathSciNet  Google Scholar 

  8. Bruno, A.D., The structure of multidimensional Diophantine approximations, Dokl. Math., 2010, vol. 82, no. 1, pp. 587–89.

    Article  MathSciNet  Google Scholar 

  9. Bruno, A.D., Structure of the best Diophantine approximations and multidimensional generalizations of the continued fraction, Cebyshev Sb. (Tula), 2010, vol. 11, no. 1, pp. 68–73.

    MathSciNet  Google Scholar 

  10. Fukuda, K., Exact algorithms and software in optimization and polyhedral computation, Proc. of the XXI Int. Symposium on Symbolic and Algebraic Computations (ISSAC’08), New York: ACM, 2008, pp. 333–334.

  11. C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Software 1996, vol. 22, pp. 469–483. http://www. qhull.org

  12. Bruno, A.D., Generalizations of continued fractions, Cebyshev Sb. (Tula), 2006, vol. 7, no. 3, pp. 4–71. [in Russian]

    MathSciNet  Google Scholar 

  13. Bruno A.D. and Parusnikov, V.I., Polyhedra of modules of triples of linear forms, Preprint No. 93, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2003). http://library.keldysh.ru/ preprint.asp?id 03-93 [in Russian]

  14. Basu S., Pollack, R., and Roy, M.-F., Algorithms in Real Algebraic Geometry, Berlin: Springer 2006.

    Book  MATH  Google Scholar 

  15. Batkhin, A.B., Parameterization of the discriminant set of a polynomial, Program. Comput. Software, 2016, vol. 42, no. 2, pp. 65–76.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bruno, A.D., From Diophantine approximations to Diophantine equations, Preprint No. 1, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2016). http://library.keldysh.ru /preprint.asp?id 16-1 [in Russian]

  17. Bruno, A.D., Computation of the best Diophantine approximations and of fundamental units of algebraic fields, Dokl. Math., 2016, vol. 93, pp. 243–247.

    Article  MathSciNet  Google Scholar 

  18. Markov, A.A. Sur les nombres entieres dependents d’une racine cubique d’un nombre entier ordinaire, Mémoires de l’Academie de St.-Petersburg, Ser. VII, 1892, vol. 38, no. 9, pp. 4–32.

    Google Scholar 

  19. Bruno, A.D. and Parusnikov, V.I., New generalizations of the continued fraction, Preprint No. 52, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2005).

    Google Scholar 

  20. Bruno, A.D. and Parusnikov, V.I., Further generalization of the continued fraction, Dokl. Math., 2006, vol. 74, no. 2, pp. 628–632.

    Article  MATH  Google Scholar 

  21. Bruno, A.D. and Parusnikov, V.I., Two-way generalization of the continued fraction, Dokl. Math., 2009, vol. 80, no. 3, pp. 887–890.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A. B. Batkhin and A. A. Sokolov for their big help in the preparation of this paper.

This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00422а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bruno.

Additional information

Devoted to the memory of I. R. Shafarevich

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, A.D. Computation of the Fundamental Units of Number Rings Using a Generalized Continued Fraction. Program Comput Soft 45, 37–50 (2019). https://doi.org/10.1134/S036176881902004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036176881902004X