Skip to main content
Log in

Visualization Technologies to Support Decision-Making in City Management

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Data is a valuable asset to the management of a city. With the growing integration of technology, some tools help collect, process, and visualize urban data, aiding the interpretation and understanding of how urban systems work. Despite the wide use of visualization to support decision-making in urban management, the understanding of urban data visualization in cities is limited in the current literature. In this paper, we propose a model of human decision-making supported by Information and Communication Technologies that helps understand the role of urban data visualization in city management. To analyze the use of visualization technologies in city management, we review the advances of information visualization to support decision-making in city management, and present a field study where we surveyed 35 government institutions to explore urban data and technologies “real use” in city management. Based on the literature review results and the field study, we identified the areas of opportunity for visualizing urban data to support city management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. OECD, Governing Cities, 2020. http://www.oecd.org/regional/regional-policy/cities.htm. Accessed Mar. 25, 2021.

  2. Manville, C., et al., Mapping Smart Cities in the EU. Study, 2014, no. IP/A/ITRE/ST/2013-02 PE 507.480,.

  3. Raj, P. and Kumar, S., Big data analytics processes and platforms facilitating smart cities, in Smart Cities: Foundations, Principles, and Applications, Song, H., Srinivasan, R., Sookoor, T., and Jeschke, S., Eds., John Wiley & Sons, 2017.

    Google Scholar 

  4. Janssen, J., Erkens, G., and Kirschner, P.A., Group awareness tools: It’s what you do with it that matters, Comput. Hum. Behav., 2011, vol. 27, no. 3, pp. 1046–1058.

    Article  Google Scholar 

  5. Card, S.K., Mackinlay, J.D., and Shneiderman, B., Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann, 1999.

    Google Scholar 

  6. Zakharova, A. and Shklyar, A., Visualization metaphors, Program. Comput. Software, 2001, vol. 27, no. 5, pp. 227–237.

    Article  Google Scholar 

  7. Batty, M., New developments in urban modeling: simulation, representation, and visualization, Integr. Land Use Environ. Models, 2003, no. 1957, pp. 13–43.

  8. Pettit, C., Widjaja, I., Russo, P., Sinnott, R., Stimson, R., and Tomko, M., Visualisation support for exploring urban space and place, Proc. 22nd ISPRSCongress Annals Photogrammetry Remote Sensing and Spatial Information Sciences, Melbourne, Aug. 25–Sept. 1, 2012, vol. 1, pp. 153–158.

  9. Kim, S.A., Shin, D., Choe, Y., Seibert, T., and Walz, S.P., Integrated energy monitoring and visualization system for Smart Green City development: designing a spatial information integrated energy monitoring model in the context of massive data management on a web based platform, Autom. Constr., 2012, vol. 22, pp. 51–59.

    Article  Google Scholar 

  10. Gunturi, V.M.V. and Shekhar, S., in Seeing Cities Through Big Data, Cham: Springer, 2017.

    Google Scholar 

  11. Kunze, A., Burkhard, R., Gebhardt, S., and Tuncer, B., Visualization and decision support tools in urban planning, in Communications in Computer and Information Science, Berlin, Heidelberg: Springer, 2012, pp. 279–298.

    Google Scholar 

  12. Singh, S., Wenzel, G., and Brettschneider, F., Visualization for decision-making in smart cities, in Smart Economy in Smart Cities, Springer, 2016, vol. 6, pp. 317–322.

    Google Scholar 

  13. Batty, M., Hudson-Smith, A., Hugel, S., and Roumpani, F., Visualising data for smart cities, in Smart Technologies: Breakthroughs in Research and Practice, IGI Global, 2018, pp. 453–475.

    Google Scholar 

  14. Cepero, M.T. and Montane-Jimenez, L.G., Visualization to support decision-making in cities: advances, technology, challenges, and opportunities, Proc. 8th Int. Conf. in Software Engineering Research and Innovation (CONISOFT), 2020, pp. 198–207.

  15. Vila, R.A., Estevez, E., and Fillottrani, P.R., The design and use of dashboards for driving decision-making in the public sector, Proc. 11th Int. Conf. on Theory and Practice of Electronic Governance, ICEGOV’18, Galway, Apr. 2018, pp. 382–388

  16. Pettit, C., et al., Planning support systems for smart cities, City, Cult. Soc., 2017, vol. 12, pp. 13–24.

    Google Scholar 

  17. Saggi, M.K. and Jain, S., A survey towards an integration of big data analytics to big insights for value-creation, Inf. Process. Manag., 2018, vol. 54, no. 5, pp. 758–790.

    Article  Google Scholar 

  18. Laramee, R.S., Turkay, C., and Joshi, A., Visualization for smart city applications, IEEE Comput. Graph. Appl., 2018, vol. 38, no. 5, pp. 36–37.

    Article  Google Scholar 

  19. Carrera, F., Wise cities: ‘old’ big data and ‘slow’ real time, Built Environ., 2016, vol. 42, no. 3, pp. 474–497.

    Article  Google Scholar 

  20. Thakuriah, P., Tilahun, N., and Zellner, M., Introduction to seeing cities through big data: research, methods and applications in urban informatics, in Seeing Cities Through Big Data, Springer, 2017, pp. 1–9.

    Book  Google Scholar 

  21. Sharifi, A., A global dataset on tools, frameworks, and indicator sets for smart city assessment, Data Brief, 2020, vol. 29, p. 105364.

    Article  Google Scholar 

  22. Babar, M., Arif, F., Jan, M.A., Tan, Z., and Khan, F., Urban data management system: towards big data analytics for Internet of things based smart urban environment using customized Hadoop, Future Gener. Comput. Syst., 2019, vol. 96, pp. 398–409.

    Article  Google Scholar 

  23. Ware, C., Information Visualization: Perception for Design, 2nd ed., Elsevier, 2014.

    Google Scholar 

  24. Chi, E.H., Taxonomy of visualization techniques using the data state reference model, Proc. IEEE Symp. Inf. Vision, 2000, vol. 94301, pp. 69–75.

  25. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., and Keim, D.A., Knowledge generation model for visual analytics, IEEE Trans. Vision Comput. Graph., 2014, vol. 20, no. 12, pp. 1604–1613.

    Article  Google Scholar 

  26. Sacha, D., Senaratne, H., Kwon, B.C., Ellis, G., and Keim, D.A., The role of uncertainty, awareness, and trust in visual analytics, IEEE Trans. Vis. Comput. Graph., 2016, vol. 22, no. 1, pp. 240–249.

    Article  Google Scholar 

  27. Billger, M., Thuvander, L., and Wästberg, B.S., In search of visualization challenges: the development and implementation of visualization tools for supporting dialogue in urban planning processes, Environ. Plann. B Urban Anal. City Sci., 2017, vol. 44, no. 6, pp. 1012–1035.

    Google Scholar 

  28. Ali, S.M., Gupta, N., Nayak, G.K., and Lenka, R.K., Big data visualization: tools and challenges, Proc. 2nd Int. Conf. Contemporary Computing and Informatics, IC3I 2016, Greater Noida, 2017, pp. 656–660.

  29. Sauter, V.L., Decision making, in Decision Support Systems for Business Intelligence, Wiley, 2010.

    MATH  Google Scholar 

  30. Lehto, M.R., Nah, F.F.H., and Yi, J.S., Decision-making models, decision support, and problem solving, in Handbook of Human Factors and Ergonomics, Wiley, 2012, pp. 192–242.

    Google Scholar 

  31. Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., and Carlsson, C., Past, present, and future of decision support technology, Decis. Support Syst., 2002, vol. 33, no. 2, pp. 111–126.

    Article  Google Scholar 

  32. Lau, J.Y.F., Making rational decisions, in An Introduction to Critical Thinking and Creativity, Wiley, 2011, pp. 201–213.

    Book  Google Scholar 

  33. Miller, H.G. and Mork, P., From data to decisions: a value chain for big data, IT Prof., 2013, vol. 15, no. 1, pp. 57–59.

    Google Scholar 

  34. Ma, M., Preum, S.M., Ahmed, M.Y., Tärneberg, W., Hendawi, A., and Stankovic, J.A., Data sets, modeling, and decision making in smart cities: a survey, ACM Trans. Cyber-Phys. Syst., 2019, vol. 4, no. 2.

  35. Tokola, H., Gröger, C., Järvenpää, E., and Niemi, E., Designing manufacturing dashboards on the basis of a key performance indicator survey, Procedia CIRP, 2016, vol. 57, pp. 619–624.

    Article  Google Scholar 

  36. Martig, S., Castro, S., Fillottrani, P., and Estévez, E., Un Modelo Unificado de Visualización Resumen Introducción Características del Proceso de Visualización, 2003, pp. 881–892.

  37. Pınarbaşı, K., Galparsoro, I., and Borja, Á., End users’ perspective on decision support tools in marine spatial planning, Mar. Policy, 2019, vol. 108, p. 103658.

    Article  Google Scholar 

  38. Viale Pereira, G., Eibl, G., and Parycek, P., The role of digital technologies in promoting smart city governance, Proc. Web Conf. 2018 – Companion of the World Wide Web Conf., WWW 2018, 2018, pp. 911–914.

  39. Munzner, T., Visualization analysis and design-presentation, Visualization Analysis and Design, CRC Press, 2014.

    Book  Google Scholar 

  40. Kalawsky, R.S., Gaining greater insight through interactive visualization: a human factors perspective, in Trends in Interactive Visualization, Springer, 2009, no. 1, pp. 119–154.

  41. Kitchenham, B., Procedures for performing systematic literature reviews, Jt. Tech. Report, Keele Univ. TR/SE-0401 NICTA TR-0400011T.1, 2004, p. 33.

  42. Sachsenmeier, R., Marinescu, L., Oliveira, J., Silva, M., and Verhijde, M., Smart cities, in Guide to Open Government, Lifelong Learning Programme, 2015, vol. 3, no. 3, pp. 4–19.

  43. Barns, S., Smart cities and urban data platforms: designing interfaces for smart governance, City, Cult. Soc., 2017, vol. 12, pp. 5–12.

    Google Scholar 

  44. Lim, C., Kim, K.J., and Maglio, P.P., Smart cities with big data: Reference models, challenges, and considerations, Cities, 2018, vol. 82, pp. 86–99.

    Article  Google Scholar 

  45. Dunne, C., Skelton, C., Diamond, S., Meirelles, I., and Martino, M., Quantitative, qualitative, and historical urban data visualization tools for professionals and stakeholders, Proc. Int. Conf. on Distributed, Ambient, and Pervasive Interactions DAPI 2016, Toronto, 2016, vol. 9749, pp. 405–416.

  46. Raoufi, K., Taylor, C., Laurin, L., and Haapala, K.R., Visual communication methods and tools for sustainability performance assessment: linking academic and industry perspectives, Procedia CIRP, 2019, vol. 80, pp. 215–220.

    Article  Google Scholar 

  47. Peters, B., What’s smart?, Can. Consult. Eng., 2019, vol. 60, no. 2, pp. 22–23.

    Google Scholar 

  48. Janvrin, D.J., Raschke, R.L., and Dilla, W.N., Making sense of complex data using interactive data visualization, J. Account. Educ., 2014, vol. 32, no. 4, pp. 31–48.

    Article  Google Scholar 

  49. Kourtit, K. and Nijkamp, P., Big data dashboards as smart decision support tools for i-cities – an experiment on Stockholm, Land Use Policy, 2018, vol. 71, pp. 24–35.

    Article  Google Scholar 

  50. Yonezawa, T., Matranga, I., Galache, J.A., Maeomichi, H., Gurgen, L., and Shibuya, T., A citizen-centric approach towards global-scale smart city platform, Proc. Int. Conf. Recent Adv. Internet Things, RIoT 2015, Singapore, 2015, pp. 7–9.

  51. Parygin, D., Sadovnikova, N., Kalinkina, M., Potapova, T., and Finogeev, A., Visualization of data about events in the urban environment for the decision support of the city services actions coordination, Proc. 5th Int. Conf. on System Modeling and Advancement in Research Trends, SMART 2016, Moradabad, 2016, pp. 283–290.

  52. Marras, M., Manca, M., Boratto, L., Fenu, G., and Laniado, D., BarcelonaNow: empowering citizens with interactive dashboards for urban data exploration, Proc. 2018 Web Conf. Companion, WWW’18 Companion, Lyon, Apr. 23–27, 2018, pp. 219–222.

  53. Hagen, L., Keller, T.E., Yerden, X., and Luna-Reyes, L.F., Open data visualizations and analytics as tools for policy-making, Gov. Inf. Qual., 2019, vol. 36, no. 4, p. 101387.

    Article  Google Scholar 

  54. Sauter, V.L., Executive information and dashboards, in Decision Support Systems for Business Intelligence, Wiley, 2010.

    MATH  Google Scholar 

  55. Batty, M., Big data, smart cities and city planning, Dialogues Hum. Geogr., 2013, vol. 3, no. 3, pp. 274–279.

    Article  Google Scholar 

  56. Geertman, S. and Stillwell, J., Planning Support Systems: Content, Issues and Trends, Dordrecht: Springer, 2009, pp. 137–157.

    Google Scholar 

  57. Few, S., Dashboard confusion revisited, Visual Bus. Intell. Newsl., March 2007, pp. 1–6.

  58. Zhdanov, A.D., Zhdanov, D.D., Bogdanov, N.N., Potemin, I.S., Galaktionov, V.A., and Sorokin, M.I., Discomfort of visual perception in virtual and mixed reality systems, Program. Comput. Software, 2019, vol. 45, no. 4, pp. 147–155.

    Article  Google Scholar 

  59. Matheus, R., Janssen, M., and Maheshwari, D., Data science empowering the public: data-driven dashboards for transparent and accountable decision-making in smart cities, Gov. Inf. Qual., 2018, vol. 37, no, 3, p. 101284.

    Article  Google Scholar 

  60. Santana, E.F.Z., Chaves, A.P., Gerosa, M.A., Kon, F., and Milojicic, D.S., Software platforms for smart cities: concepts, requirements, challenges, and a unified reference architecture, ACM Comput. Surv., 2017, vol. 50, no. 6.

  61. Chourabi, H., et al., Understanding smart cities: an integrative framework, Proc. 45th Hawaii Int. Conf. on System Sciences, Maui, HI, 2012, pp. 2289–2297.

  62. Ghosh, D., Ae Chun, S., Shafiq, B., and Adam, N.R., Big data-based smart city platform: real-time crime analysis, Proc. 17th Int. Digital Government Research Conf., Shanghai, 2016, pp. 58–66.

  63. Russo, P., Lanzilotti, R., Costabile, M.F., and Pettit, C.J., Adoption and use of software in land use planning practice: a multiple-country study, Int. J. Hum. Comput. Interact., 2018, vol. 34, no. 1, pp. 57–72.

    Article  Google Scholar 

  64. McIntosh, B.S., et al., Environmental decision support systems (EDSS) development – challenges and best practices, Environ. Model. Software, 2011, vol. 26, no. 12, pp. 1389–1402.

    Article  Google Scholar 

  65. Young, G.W., Kitchin, R., and Naji, J., Building city dashboards for different types of users, J. Urban Technol., 2020, vol. 28, no. 1, pp. 1–21.

    Google Scholar 

  66. ISO Standard no. 9241-210:2019: Ergonomics of Human-System Interaction – Part 210: Human-Centred Design for Interactive Systems, 1994.

  67. Zhang, J., Johnson, K.A., Malin, J.T., and Smith, J.W., Human-centered information visualization, Int. Work. Dyn. Vis. Learn., 2002, p. 7.

    Google Scholar 

  68. Eräranta, S. and Staffans, A., From situation awareness to smart city planning and decision making, Proc. 14th Int. Conf. Computers in Urban Planning and Urban Management, CUPUM 2015, Cambridge, MA, 2015.

  69. Grainger, S., Mao, F., and Buytaert, W., Environmental data visualisation for non-scientific contexts: literature review and design framework, Environ. Model. Software, 2016, vol. 85, pp. 299–318.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers of this paper for their useful comments. The first author gratefully acknowledges to CONACYT for scholarship No. 745838 for graduate studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Cepero, L. G. Montané-Jiménez or G. Toledo-Toledo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cepero, T., Montané-Jiménez, L.G. & Toledo-Toledo, G. Visualization Technologies to Support Decision-Making in City Management. Program Comput Soft 47, 803–816 (2021). https://doi.org/10.1134/S0361768821080107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821080107

Navigation