Skip to main content
Log in

Explicit Multiobjective Evolutionary Algorithms for Flow Shop Scheduling with Missing Operations

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The impact of Industry 4.0 on production systems has significantly enhanced personalized production services for products customization, implying that production processes end up being customized as well. In this scenario, scheduling in flow shop configurations faces new challenges, since some of the products may require operations that other products do not, and the interest on problems with missing operation is renewed. This work addresses a multi-objective flow shop problem with missing operations, aimed at minimizing makespan and total tardiness. Two multi-objective evolutionary algorithms based on NSGA-II and SPEA2 are proposed to solve the problem, The experimental evaluation demonstrates that the proposed multiobjective evolutionary algorithms are able to compute accurate solutions to the problem, properly approximating the Pareto front for the studied instances. In turn, the multiobjective approach improved over a single-objective evolutionary algorithm previously developed for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. http://jmetal.sourceforge.net/

REFERENCES

  1. Xu, L.D., Xu, E.L., and Li, L., Industry 4.0: state of the art and future trends, Int. J. Prod. Res., 2018, vol. 56, no. 8, pp. 2941–2962.

    Article  Google Scholar 

  2. Hermann, M., Pentek, T., and Otto, B., Design principles for industrie 4.0 scenarios, Proc. 49th IEEE Hawaii Int. Conf. on System Sciences (HICSS), Koloa, HI, 2016, pp. 3928–3937.

  3. Alcácer, V. and Cruz-Machado, V., Scanning the industry 4.0: a literature review on technologies for manufacturing systems, Eng. Sci. Technol., Int. J., 2019, vol. 22, no. 3, pp. 899–919.

    Google Scholar 

  4. Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., and Ueda, K., Cyber-physical systems in manufacturing, CIRP Ann., 2016, vol. 65, no. 2, pp. 621–641.

    Article  Google Scholar 

  5. Ivanov, D., Sethi, S., Dolgui, A., and Sokolov, B., A survey on control theory applications to operational systems, supply chain management, and Industry 4.0, Annu. Rev. Control, 2018, vol. 46, pp. 134–147.

    Article  Google Scholar 

  6. Huang, G., Chen, J., and Khojasteh, Y., A cyber-physical system deployment based on pull strategies for one-of-a-kind production with limited resources, J. Intell. Manuf., 2021, vol. 32, pp. 579–596.

    Article  Google Scholar 

  7. Pan, Q.K., Tasgetiren, M.F., Suganthan, P.N., and Chua, T.J., A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem, Inf. Sci., 2011, vol. 181, no. 12, pp. 2455–2468.

    Article  MathSciNet  Google Scholar 

  8. Yenisey, M.M. and Yagmahan, B., Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends, Omega, 2014, vol. 45, pp. 119–135.

    Article  Google Scholar 

  9. Zheng, P., Lin, Y., Chen, C.H., and Xu, X., Smart, connected open architecture product: an IT-driven co-creation paradigm with lifecycle personalization concerns, Int. J. Prod. Res., 2019, vol. 57, no. 8, pp. 2571–2584.

    Article  Google Scholar 

  10. Glass, C.A., Gupta, J.N., and Potts, C.N., Two-machine no-wait flow shop scheduling with missing operations, Math. Oper. Res., 1999, vol. 24, no. 4, pp. 911–924.

    Article  MathSciNet  Google Scholar 

  11. Nesmachnow, S., An overview of metaheuristics: accurate and efficient methods for optimisation, Int. J. Metaheuristics, 2014, vol. 3, no. 4, pp. 320–347.

    Article  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.A.M.T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 2002, vol. 6, no. 2, pp. 182–197.

    Article  Google Scholar 

  13. Zitzler, E., Laumanns, M., and Thiele, L., SPEA2: improving the strength Pareto evolutionary algorithm, Tech. Rep., Zürich: Inst. für Technische Informatik und Kommunikationsnetze, 2001, no. 103.

  14. Ponnambalam, S.G., Jagannathan, H., Kataria, M., and Gadicherla, A., A TSP-GA multi-objective algorithm for flow-shop scheduling, Int. J. Adv. Manuf. Technol., 2004, vol. 23, no. 11, pp. 909–915.

    Article  Google Scholar 

  15. Yagmahan, B. and Yenisey, M.M., Ant colony optimization for multi-objective flow shop scheduling problem, Comput. Ind. Eng., 2008, vol. 54, no. 3, pp. 411–420.

    Article  Google Scholar 

  16. Rahimi-Vahed, A.R. and Mirghorbani, S.M., A multi-objective particle swarm for a flow shop scheduling problem, J. Comb. Optim., 2007, vol. 13, no. 1, pp. 79–102.

    Article  MathSciNet  Google Scholar 

  17. Li, B.B., Wang, L., and Liu, B., An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling, IEEE Trans. Syst., Man, Cybern., Part A: Syst. Humans, 2008, vol. 38, no. 4, pp. 818–831.

    Article  Google Scholar 

  18. Sha, D.Y. and Lin, H.H., A particle swarm optimization for multi-objective flowshop scheduling, Int. J. Adv. Manuf. Technol., 2009, vol. 45, no. 7-8, pp. 749–758.

    Article  Google Scholar 

  19. Marichelvam, M.K., Prabaharan, T., and Yang, X.S., A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems, IEEE Trans. Evol. Comput., 2013, vol. 18, no. 2, pp. 301–305.

    Article  Google Scholar 

  20. Arroyo, J.E.C. and de Souza Pereira, A.A., A GRASP heuristic for the multi-objective permutation flowshop scheduling problem, Int. J. Adv. Manuf. Technol., 2011, vol. 55, no. 5-8, pp. 741–753.

    Article  Google Scholar 

  21. Ishibuchi, H. and Murata, T., A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev., 1998, vol. 28, no. 3, pp. 392–403.

    Article  Google Scholar 

  22. Arroyo, J.E.C. and Armentano, V.A., Genetic local search for multi-objective flowshop scheduling problems, Eur. J. Oper. Res., 2005, vol. 167, no. 3, pp. 717–738.

    Article  MathSciNet  Google Scholar 

  23. Li, X. and Ma, S., Multi-objective memetic search algorithm for multi-objective permutation flow shop scheduling problem, IEEE Access, 2016, vol. 4, pp. 2154–2165.

    Article  Google Scholar 

  24. Zhang, Q. and Li, H., MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 2007, vol. 11, no. 6, pp. 712–731.

    Article  Google Scholar 

  25. Liang, J., Wang, P., Guo, L., Qu, B., Yue, C., Yu, K., and Wang, Y., Multi-objective flow shop scheduling with limited buffers using hybrid self-adaptive differential evolution, Memetic Comput., 2019, vol. 11, no. 4, pp. 407–422.

    Article  Google Scholar 

  26. Han, Y., Gong, D., Jin, Y., and Pan, Q., Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns, IEEE Trans. Cybern., 2017, vol. 49, no. 1, pp. 184–197.

    Article  Google Scholar 

  27. Shao, Z., Pi, D., and Shao, W., A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem, Knowl.-Based Syst., 2019, vol. 165, pp. 110–131.

    Article  Google Scholar 

  28. Anjana, V., Sridharan, R., and Kumar, P.R., Metaheuristics for solving a multi-objective flow shop scheduling problem with sequence-dependent setup times, J. Scheduling, 2020, vol. 23, no. 1, pp. 49–69.

    Article  MathSciNet  Google Scholar 

  29. Ding, J.Y., Song, S., and Wu, C., Carbon-efficient scheduling of flow shops by multi-objective optimization, Eur. J. Oper. Res., 2016, vol. 248, no. 3, pp. 758–771.

    Article  MathSciNet  Google Scholar 

  30. Chen, J.F., Wang, L., and Peng, Z.P., A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling, Swarm Evol. Comput., 2019, vol. 50, p. 100557.

    Article  Google Scholar 

  31. Han, Y., Li, J., Sang, H., Liu, Y., Gao, K., and Pan, Q., Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time, Appl. Soft Comput., 2020, vol. 93, p. 106343.

    Article  Google Scholar 

  32. Rossit, D.A., Toncovich, A., Rossit, D.G., and Nesmachnow, S., Solving a flow shop scheduling problem with missing operations in an Industry 4.0 production environment, J. Project Manag., 2021, vol. 6, no. 1, pp. 33–44.

    Article  Google Scholar 

  33. Rossit, D.A., Tohmé, F., and Frutos, M., Industry 4.0: smart scheduling, Int. J. Prod. Res., 2019, vol. 57, no. 12, pp. 3802–3813.

    Article  Google Scholar 

  34. Wang, Y., Ma, H.S., Yang, J.H., and Wang, K.S., Industry 4.0: a way from mass customization to mass personalization production, Adv. Manuf., 2017, vol. 5, no. 4, pp. 311–320.

    Article  Google Scholar 

  35. Rossit, D.A., Tohmé, F., and Frutos, M., Production planning and scheduling in cyber-physical production systems: a review, Int. J. Comput. Integr. Manuf., 2019, vol. 32, no. 4–5, pp. 385–395.

    Article  Google Scholar 

  36. Henneberg, M. and Neufeld, J., A constructive algorithm and a simulated annealing approach for solving flowshop problems with missing operations, Int. J. Prod. Res., 2016, vol. 54, no. 12, pp. 3534–3550.

    Article  Google Scholar 

  37. Toncovich, A., Rossit, D.A., Frutos, M., and Rossit, D.G., Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure, Int. J. Ind. Eng. Comput., 2019, vol. 10, no. 1, pp. 1–16.

    Google Scholar 

  38. Deb, K., Multiobjective Optimization Using Evolutionary Algorithms, John Wiley and Sons, 2001.

    MATH  Google Scholar 

  39. Iturriaga, S., Nesmachnow, S., Goñi, G., Dorronsoro, B., and Tchernykh, A., Evolutionary algorithms for optimizing cost and QoS on cloud-based content distribution networks, Program. Comput. Software, 2019, vol. 45, no. 8, pp. 544–556.

    Article  Google Scholar 

  40. Hodashinsky, I. and Mekh, M., Fuzzy classifier design using harmonic search methods, Program. Comput. Software, 2017, vol. 43, no. 1, pp. 37–46.

    Article  MathSciNet  Google Scholar 

  41. Sokolinsky, L. and Shamakina, A., Methods of resource management in problem-oriented computing environment, Program. Comput. Software, 2016, vol. 42, no. 1, pp. 17–26.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. G. Rossit, D. A. Rossit or S. Nesmachnow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossit, D.G., Rossit, D.A. & Nesmachnow, S. Explicit Multiobjective Evolutionary Algorithms for Flow Shop Scheduling with Missing Operations. Program Comput Soft 47, 615–630 (2021). https://doi.org/10.1134/S0361768821080223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821080223

Navigation