Skip to main content
Log in

Symbolic Investigation of the Spectral Characteristics of Guided Modes in Smoothly Irregular Waveguides

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

This paper considers a homogeneous system of functional equations that occurs when solving a spectral problem the eigenfunctions of which describe guided modes of smoothly irregular waveguides. The resulting system of functional equations is a homogeneous system of algebraic equations for any fixed argument. A symbolic method for solving systems of functional equations of this type is proposed. The method is implemented in the Maple computer algebra system. Results of numerical computations are presented to demonstrate the effectiveness of the developed symbolic-numerical method in comparison with the approach based on only numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Sevastyanov, L.A., Sevastyanov, A.L., and Tyutyunnik, A.A., Analytical calculations in Maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures, Lect. Notes Comput. Sci., 2014, vol. 8660, pp. 419–431. https://doi.org/10.1007/978-3-319-10515-4_30

    Article  MATH  Google Scholar 

  2. Divakov, D.V. and Sevastianov, A.L., The implementation of the symbolic-numerical method for finding the adiabatic waveguide modes of integrated optical waveguides in CAS Maple, Lect. Notes Comput. Sci., 2019, vol. 11661, pp. 107–121. https://doi.org/10.1007/978-3-030-26831-2_8

    Article  MathSciNet  MATH  Google Scholar 

  3. Yee, K., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 1966, vol. 14, no. 3, pp. 302–307. https://doi.org/10.1109/TAP.1966.1138693

    Article  MATH  Google Scholar 

  4. Taflove, A., Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems, IEEE Trans. Electromagn. Compat., 1980, vol. EMC-22, no. 3, pp. 191–202. https://doi.org/10.1109/TEMC.1980.30387

    Article  Google Scholar 

  5. Joseph, R., Goorjian, P., and Taflove, A., Direct time integration of Maxwell’s equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons, Opt. Lett., 1993, vol. 7, pp. 491–493. https://doi.org/10.1364/OL.18.000491

    Article  Google Scholar 

  6. Sveshnikov, A.G., The incomplete Galerkin method, Dokl. Akad. Nauk SSSR, 1977, vol. 236, no. 5, pp. 1076–1079.

    MathSciNet  MATH  Google Scholar 

  7. Petukhov, A.A., Joint application of the incomplete Galerkin method and scattering matrix method for modeling multilayer diffraction gratings, Math. Models Comput. Simul., 2014, vol. 6, pp. 92–100. https://doi.org/10.1134/S2070048214010128

    Article  MathSciNet  Google Scholar 

  8. Tiutiunnik, A.A., Divakov, D.V., Malykh, M.D., and Sevastianov, L.A., Symbolic–numeric implementation of the four potential method for calculating normal modes: An example of square electromagnetic waveguide with rectangular insert, Lect. Notes Comput. Sci., 2019, vol. 11661, pp. 412–429. https://doi.org/10.1007/978-3-030-26831-2_27

    Article  MathSciNet  MATH  Google Scholar 

  9. Zorin, A.V., Sevastianov, L.A., and Tretyakov, N.P., Computer modeling of hydrogen-like atoms in quantum mechanics with nonnegative distribution function, Program. Comput. Software, 2007, vol. 33, pp. 94–104.

    Article  MathSciNet  Google Scholar 

  10. Kantorovich, L.V. and Krylov, V.I., Priblizhennye metody vysshego analiza (Approximate Methods of Higher Analysis), Moscow: Fizmatgiz, 1962.

  11. Vinitsky, S.I., Gerdt, V.P., Gusev, A.A., Kaschiev, M.S., Rostovtsev, V.A., Samoilov, V.N., Tyupikova, T.V., and Chuluunbaatar, O., A symbolic–numerical algorithm for the computation of matrix elements in the parametric eigenvalue problem, Program. Comput. Software, 2007, vol. 33, pp. 105–116.

    Article  MathSciNet  Google Scholar 

  12. Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice Hall, 1982.

    Google Scholar 

  13. Bogolyubov, A.N., Mukhartova, Yu.V., Gao, J., and Bogolyubov, N.A., Mathematical modeling of plane chiral waveguide using mixed finite elements, Prog. Electromagn. Res. Symp., 2012, pp. 1216–1219.

  14. Blinkov, Yu.A. and Mozzhilkin, V.V., Generation of difference schemes for the burgers equation by constructing Gröbner bases, Program. Comput. Software, 2006, vol. 32, pp. 114–117.

    Article  MathSciNet  Google Scholar 

  15. Blinkov, Yu.A., Gerdt, V.P., and Marinov, K.B., Discretization of quasilinear evolution equations by computer algebra methods, Program. Comput. Software, 2017, vol. 43, pp. 84–89.

    Article  MathSciNet  Google Scholar 

  16. Katsenelenbaum, B.Z., Mercader del Rio, L., Pereyaslavets, M., Sorolla Ayza, M., and Thumm, M., Theory of Nonuniform Waveguides: The Cross-Section Method, London: Inst. Eng. Technol., 1998.

    Book  Google Scholar 

  17. Katsenelenbaum, B.Z., Teoriya neregulyarnykh volnovodov s medlenno menyayushchimisya parametrami (Theory of Irregular Waveguides with Slowly Varying Parameters), Moscow: Akad. Nauk SSSR, 1961.

  18. Shevchenko, V.V., Plavnye perekhody v otkrytykh volnovodakh: vvedenie v teoriyu (Smooth Transitions in Open Waveguides: An Introduction to the Theory), Moscow: Nauka, 1969.

  19. Ivanov, A.A. and Shevchenko, V.V., A planar transversal junction of two planar waveguides, J. Commun. Technol. Electron., 2009, vol. 54, pp. 63–72.

    Article  Google Scholar 

  20. Divakov, D.V., Lovetskiy, K.P., Sevastianov, L.A., and Tiutiunnik, A.A., A single-mode model of cross-sectional method in a smoothly irregular transition between planar thin-film dielectric waveguides, Proc. SPIE, 2021.

  21. Maplesoft. https://www.maplesoft.com.

  22. Adams, M.J., An Introduction to Optical Waveguides, N.Y.: Wiley, 1981.

    Google Scholar 

  23. Gevorkyan, M., Kulyabov, D., Lovetskiy, K., Sevastianov, L., and Sevastianov, A., Field calculation for the horn waveguide transition in the single-mode approximation of the cross-sections method, Proc. SPIE, 2017, vol. 10337, no. 103370H. https://doi.org/10.1117/12.2267906

  24. Hamming, R.W., Numerical Methods for Scientists and Engineers, Dover, 1987, 2nd ed.

    MATH  Google Scholar 

  25. Divakov, D.V. and Tiutiunnik, A.A., Symbolic investigation of eigenvectors for general solution of a system of ODEs with a symbolic coefficient matrix, Program. Comput. Software, 2021, vol. 47, pp. 6–16.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 20-11-20257.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Divakov or A. A. Tyutyunnik.

Additional information

Translated by Yu. Kornienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divakov, D.V., Tyutyunnik, A.A. Symbolic Investigation of the Spectral Characteristics of Guided Modes in Smoothly Irregular Waveguides. Program Comput Soft 48, 80–89 (2022). https://doi.org/10.1134/S0361768822020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768822020049

Navigation