Skip to main content
Log in

PhyloTraVis: A New Approach to Visualization of the Phylogenetic Tree

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The study of evolution is an essential task in predicting the variability of species, especially for pathogens such as viruses. One of the main stages of evolutionary analysis is constructing a phylogenetic tree. This work is devoted to developing a new approach for visualization of the phylogenetic tree, which is based on reconstructing the evolutionary trajectory of a taxon in three-dimensional space. An evolutionary trajectory is a path that connects a particular taxon and the root of the tree. By reconstructing ancestral sequences and applying one-hot-encoding, each tree node is represented as a multidimensional object, then mapped into three-dimensional space using the embedding method, due to which, evolutionary paths from leaves to the tree’s root are generated. This approach makes it possible to visualize rapid changes in evolutionary direction, both locally and globally. The results are based on the experiments on visualization of the evolutionary trajectory of the H3N2 influenza virus and the development of a publicly available web platform called PhyloTraVis. They suggest the application of our approach for early detection of changes in the direction of evolution, the study of evolutionary dynamics, evaluation of emerging novel virus variants, and modeling of possible antigenic diversity, which are important tasks in computational virology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Orengo, C., Jones, D., and Thornton, J., Bioinformatics: Genes, Proteins and Computers, Taylor & Francis, 2003.

    Book  Google Scholar 

  2. Xu, X., Zhang, Q.Y., Chu, X.Y., Quan, Y., Lv, B.M., and Zhang, H.Y., Facilitating antiviral drug discovery using genetic and evolutionary knowledge, Viruses, 2021, vol. 13, no. 11, p. 2117.

    Article  Google Scholar 

  3. Moelling, K. and Broecker, F., Viruses and evolution – viruses first? A personal perspective, Front. Microbiol., 2019, vol. 10, p. 523.

    Article  Google Scholar 

  4. Novella, I.S., Presloid, J.B., and Taylor, R.T., RNA replication errors and the evolution of virus pathogenicity and virulence, Curr. Opin. Virol., 2014, vol. 9, pp. 143–147.

    Article  Google Scholar 

  5. Harvey, W.T., et al., Identification of low-and highimpact hemagglutinin amino acid substitutions that drive antigenic drift of influenza A (H1N1) viruses, PLoS Pathog., 2016, vol. 12, no. 4, p. e1005526.

  6. Smith, D.J., Lapedes, A.S., De Jong, J.C., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus, A.D., and Fouchier, R.A., Mapping the antigenic and genetic evolution of influenza virus, Science, 2004, vol. 305, no. 5682, pp. 371–376.

    Article  Google Scholar 

  7. Forghani, M. and Khachay, M., Convolutional neural network based approach to in silico non-anticipating prediction of antigenic distance for influenza virus, Viruses, 2020, vol. 12, no. 9, p. 1019.

    Article  Google Scholar 

  8. Klingen, T.R., Reimering, S., Guzm’an, C.A., and McHardy, A.C., In silico vaccine strain prediction for human influenza viruses, Trends Microbiol., 2018, vol. 26, no. 2, pp. 119–131.

    Article  Google Scholar 

  9. Jordan, G.E. and Piel, W.H., Web-based visualizations for the tree of life, Bioinformatics, 2008, vol. 24, no. 14, pp. 1641–1642.

    Article  Google Scholar 

  10. Forghani, M., Vasev, P., and Averbukh, V., Threedimensional visualization for phylogenetic tree, Sci. Visualization, 2017, vol. 9, no. 4, pp. 59–66. http://sv-journal.org/2017-4/06/.

  11. Averbukh, V.L., Semiotics and foundations of the theory of computer visualization, Online Sci. J. Philos. Probl. IT Cyberspace, 2013, no. 1, pp. 26–41. http://www.cv.imm.uran.ru/e/3241413.

  12. Wang, C., Feng, Y., Bodik, R., Cheung, A., and Dillig, I., Visualization by example, Proc. ACM Program. Lang., 2019, vol. 4, no. POPL, pp. 1–28.

  13. Ito, K., Igarashi, M., Miyazaki, Y., Murakami, T., Iida, S., Kida, H., and Takada, A., Gnarledtrunk evolutionary model of influenza A virus hemagglutinin, PloS One, 2011, vol. 6, no. 10, p. e25953.

  14. Cox, M.A. and Cox, T.F., Multidimensional Scaling, Handbook of Data Visualization, Berlin, Heidelberg: Springer, 2008, pp. 315–347.

    MATH  Google Scholar 

  15. Neher, R.A., Bedford, T., Daniels, R.S., Russell, C.A., and Shraiman, B.I., Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses, Proc. Nat. Acad. Sci., 2016, vol. 113, no. 12, pp. E1701–E1709.

    Article  Google Scholar 

  16. Kimura, M.A.,Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, no. 2, pp. 111–120.

    Article  Google Scholar 

  17. Page, R.D., Tree View: an application to display phylogenetic trees on personal computers, Bioinformatics, 1996, vol. 12, no. 4, pp. 357–358.

    Article  Google Scholar 

  18. Galtier, N., Gouy, M., and Gautier, C., SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny, Bioinformatics, 1996, vol. 12, no. 6, pp. 543–548.

    Article  Google Scholar 

  19. FigTree. http://tree.bio.ed.ac.uk/software/figtree/.

  20. Letunic, I. and Bork, P., Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation, Bioinformatics, 2007, vol. 23, no. 1, pp. 127–128.

    Article  Google Scholar 

  21. Robinson, O., Dylus, D., and Dessimoz, C., Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web, Mol. Biol. Evol., 2016, vol. 33, no. 8, pp. 2163–2166.

    Article  Google Scholar 

  22. Ranwez, V., Clairon, N., Delsuc, F., Pourali, S., Auberval, N., Diser, S., and Berry, V., PhyloExplorer: a web server to validate, explore and query phylogenetic trees, BMC Evol. Biol., 2009, vol. 9, no. 1, pp. 1–13.

    Article  Google Scholar 

  23. Wang, L.G., et al., Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data, Mol. Biol. Evol., 2020, vol. 37, no. 2, pp. 599–603.

    Article  Google Scholar 

  24. Forghani, M., Vasev, P., Ramsay, E., and Bersenev, A., Visualization of the evolutionary path: an influenza case study, CEUR Workshop Proc. – CEUR-WS, 2021, vol. 3027, pp. 358–368.

  25. Steinparz, C.A., Hinterreiter, A.P., Stitz, H., and Streit, M., Visualization of Rubik’s cube solution algorithms, Proc. EuroVis Workshop on Visual Analytics, Porto, 2019, pp. 19–23.

  26. Van der Maaten, L. and Hinton, G., Visualizing data using t-SNE, J. Mach. Learn. Res., 2008, vol. 9, no. 11.

  27. Grinberg, M., Flask Web Development: Developing Web Applications with Python, O’Reilly Media, 2018.

    Google Scholar 

  28. Cock, P.J., et al., Biopython: freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics, 2009, vol. 25, no. 11, pp. 1422–1423.

    Article  Google Scholar 

  29. Pedregosa, F., et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.

    MathSciNet  MATH  Google Scholar 

  30. Price, M.N., Dehal, P.S., and Arkin, A.P., FastTree 2 – approximately maximum-likelihood trees for large alignments, PloS One, 2010, vol. 5, no. 3, p. e9490.

  31. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313.

    Article  Google Scholar 

  32. Forghani, M., Kovalev, S., Bolkov, M., Khachay, M., and Vasev, P., TBEV analyzer platform for evolutionary analysis and monitoring tick-borne encephalitis virus: 2020 update, Biostat. Epidemiol., 2021, pp. 1–17.

  33. Baydas, S. and Karakas, B., Defining a curve as a Bezier curve, J. Taibah Univ. Sci., 2019, vol. 13, no. 1, pp. 522–528.

    Article  Google Scholar 

  34. Vasev, P., Vrungel. https://github.com/viewzavr/vrungel.

  35. Dirksen, J., Learning Three. js: the JavaScript 3D library for WebGL, Packt Publ. Ltd., 2013.

    Google Scholar 

  36. Averbukh, V.L., Baidalin, A.Yu., Ismagilov, D.R., Kazantsev, A.Yu., and Timoshpolsky, S.P., Using 3D metaphors of visualization, Proc. 14th Int. Conf. on Computer Graphics and Vision GraphiCon, Moscow, Sept. 6–10, 2004, pp. 295–298. http://www.cv.imm.uran.ru/e/3549.

  37. Wang, P., Zhu, W., Liao, B., Cai, L., Peng, L., and Yang, J., Predicting influenza antigenicity by matrix completion with antigen and antiserum similarity, Front. Microbiol., 2018, vol. 9, p. 2500.

    Article  Google Scholar 

  38. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucl. Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797.

    Article  Google Scholar 

  39. Rozewicki, J., Li, S., Amada, K.M., Standley, D.M., and Katoh, K., MAFFT-DASH: integrated protein sequence and structural alignment, Nucl. Acids Res., 2019, vol. 47, issue W1, pp. W5–W10. https://doi.org/10.1093/nar/gkz342

    Article  Google Scholar 

  40. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and Kanehisa, M., AAindex: amino acid index database, progress report 2008, Nucl. Acids Res., 2007, vol. 36, suppl. 1, pp. D202–D205. https://www.genome.jp/aaindex/.

    Article  Google Scholar 

  41. Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, no. 2, part 1, pp. 209–220.

Download references

ACKNOWLEDGMENTS

The reported study was funded by Russian Foundation for Basic Research (RFBR), project number 19-31-60025.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Forghani, P. A. Vasev, M. A. Bolkov, E. S. Ramsay or A. Y. Bersenev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forghani, M., Vasev, P.A., Bolkov, M.A. et al. PhyloTraVis: A New Approach to Visualization of the Phylogenetic Tree. Program Comput Soft 48, 215–226 (2022). https://doi.org/10.1134/S0361768822030045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768822030045

Navigation