Skip to main content
Log in

Automatic Code Generation of User-centered Serious Games: A Decade in Review

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

This paper reviews the literature on automatic code generation of user-centered serious games. We decided to break the study in two parts: one study about serious games with model driven engineering, and another study about user-centered serious games. This paper presents an extension of a paper presented at CONISOFT 20 where a systematic review of 5 years old at the time of writing was presented exclusively. The systematic literature review conducted in this paper covers a decade of information from January 2012 to June 2022. The main objective is to know the literature that helps to mitigate the costs and time of software development in serious games. The overall conclusion is that there is still work to be done to combine serious user-centered games and automatic generation. This paper is a systematic review that identifies relevant publications and provides an overview of research areas and publication venues. In addition, Research perspectives were classified according to common objectives, techniques, and approaches. Finally, is presented point out challenges and opportunities for future research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Catalano, C.E., Luccini, A.M., and Mortara, M., Guidelines for an effective design of serious games, Int. J. Serious Games, 2014, vol. 1, no. 1. https://doi.org/10.17083/ijsg.v1i1.8

  2. Frasca, G., Juego, videojuego y creación de sentido, Una introducción, 2009, vol. 1, pp. 37–44. https://doi.org/10.29378/plurais.2447-9373.2010.v1.n2.%p

  3. Hanes, L. and Stone, R., A model of heritage content to support the design and analysis of video games for history education, J. Comput. Educ., 2019, vol. 6, no. 4, pp. 587–612. https://doi.org/10.1007/s40692-018-0120-2

    Article  Google Scholar 

  4. Nielsen, J., Usability 101: Introduction to Usability, Nielsen Norman Group, 2012. https://www.nngroup.com/articles/usability-101-introduction-to-usability. Accessed Apr. 07, 2022.

  5. Blow, J., Game development: harder than you think, Queue, 2004, vol. 1, no. 10, pp. 28–37. https://doi.org/10.1145/971564.971590

    Article  Google Scholar 

  6. Reyno, E.M. and Carsí Cubel, J., Automatic prototyping in model-driven game development, Comput. Entertain., 2009, vol. 7, no. 2, pp. 1–9. https://doi.org/10.1145/1541895.1541909

    Article  Google Scholar 

  7. Ruiz-Rube, I., Dodero, J.M., and Ruiz, M., Ingenieria Dirigida por Modelos como soporte a la gestion de procesos software, II Jornadas Predoctorales, la Univ. Cádiz: Escuela Superior de Ingeniería, 2010.

    Google Scholar 

  8. Zhu, M. and Wang, A.I., Model-driven game development: a literature review, ACM Comput. Surv., 2019, vol. 52, no. 6. https://doi.org/10.1145/3365000

  9. Laamarti, F., Eid, M., and El Saddik, A., An overview of serious games, Int. J. Comput. Games Technol., 2014, vol. 2014, no. 3. https://doi.org/10.1155/2014/358152

  10. Cowan, B. and Kapralos, B., A survey of frameworks and game engines for serious game development, Proc. IEEE 14th Int. Conf. on Advanced Learning Technologies, Athenes, 2014, pp. 662–664. https://doi.org/10.1109/ICALT.2014.194

  11. Tan, A.J.Q., Lau, C.C.S., and Liaw, S.Y., Serious games in nursing education: an integrative review, Proc. 9th Int. Conf. on Virtual Worlds and Games for Serious Applications, VS-Games 2017, Athenes, 2017, pp. 187–188. https://doi.org/10.1109/VS-GAMES.2017.8056599

  12. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., and Linkman, S., Systematic literature reviews in software engineering – a systematic literature review, Inf. Software Technol., 2009, vol. 51, no. 1, pp. 7–15. https://doi.org/10.1016/j.infsof.2008.09.009

    Article  Google Scholar 

  13. Hong, J., Suh, E., and Kim, S.J., Context-aware systems: a literature review and classification, Expert Syst. Appl., 2009, vol. 36, no. 4, pp. 8509–8522. file:///C:/Documentos/Investigacion/Proyecto CB CONACYT/Soporte/Docs/context-aware literature review.pdf.

    Article  Google Scholar 

  14. Calderón, A., Boubeta-Puig, J., and Ruiz, M., MEdit4CEP-Gam: a model-driven approach for user-friendly gamification design, monitoring and code generation in CEP-based systems, Inf. Software Technol., 2018, vol. 95, pp. 238–264. https://doi.org/10.1016/j.infsof.2017.11.009

    Article  Google Scholar 

  15. Pérez-Berenguer, D. and García-Molina, J., A standard-based architecture to support learning interoperability: a practical experience in gamification, Software – Pract. Exp., 2018, vol. 48, no. 6, pp. 1238–1268. https://doi.org/10.1002/spe.2572

    Article  Google Scholar 

  16. Teipel, S., et al., Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia, Alzheimer’s Dement., 2018, vol. 14, no. 9, pp. 1216–1231. https://doi.org/10.1016/j.jalz.2018.05.003

    Article  Google Scholar 

  17. De Lope, R.P., Medina-Medina, N., Urbieta, M., Lliteras, A.B., and Mora García, A., A novel UML-based methodology for modeling adventure-based educational games, Entertain. Comput., 2021, vol. 38, no. 2, p. 100429. https://doi.org/10.1016/j.entcom.2021.100429

  18. Antunes, A. and Madeira, R.N., PLAY – model-based platform to support therapeutic serious games design, Procedia Comput. Sci., 2021, vol. 198, no. 2018, pp. 211–218. https://doi.org/10.1016/j.procs.2021.12.230

  19. Pérez, F., Lapeña, R., Marcén, A.C., and Cetina, C., Topic modeling for feature location in software models: studying both code generation and interpreted models, Inf. Software Technol., 2021, vol. 140, p. 106676. https://doi.org/10.1016/j.infsof.2021.106676

  20. Martínez-Pernía, D., et al., Using game authoring platforms to develop screen-based simulated functional assessments in persons with executive dysfunction following traumatic brain injury, J. Biomed. Inform., 2017, vol. 74, pp. 71–84. https://doi.org/10.1016/j.jbi.2017.08.012

    Article  Google Scholar 

  21. Oberdörfer, S. and Latoschik, M.E., Predicting learning effects of computer games using the Gamified Knowledge Encoding Model, Entertain. Comput., 2019, vol. 32, p. 100315. https://doi.org/10.1016/j.entcom.2019.100315

  22. Padilla-Zea, N., Medina, N.M., Gutiérrez Vela, F.L., Paderewski, P., and Collazos, C.A., PLAGER-VG: platform for managing educational multiplayer video games, Multimed. Tools Appl., 2018, vol. 77, no. 2, pp. 2115–2152. https://doi.org/10.1007/s11042-017-4376-8

    Article  Google Scholar 

  23. Thomas, A., Menassa, C.C., and Kamat, V.R., Lightweight and adaptive building simulation (LABS) framework for integrated building energy and thermal comfort analysis, Build. Simul., 2017, vol. 10, no. 6, pp. 1023–1044. https://doi.org/10.1007/s12273-017-0409-5

    Article  Google Scholar 

  24. Reinkensmeyer, D.J., et al., Computational neurorehabilitation: modeling plasticity and learning to predict recovery, J. Neuroeng. Rehabil., 2016, vol. 13, no. 1, pp. 1–25. https://doi.org/10.1186/s12984-016-0148-3

    Article  Google Scholar 

  25. Torrens, P.M., Intertwining agents and environments, Environ. Earth Sci., 2015, vol. 74, no. 10, pp. 7117–7131. https://doi.org/10.1007/s12665-015-4738-3

    Article  Google Scholar 

  26. Muñoz, J.E., Gouveia, E.R., Cameirão, M.S., and Badia, S.B.I., Physiolab – a multivariate physiological computing toolbox for ECG, EMG and EDA signals: a case of study of cardiorespiratory fitness assessment in the elderly population, Multimed. Tools Appl., 2018, vol. 77, no. 9, pp. 11511–11546. https://doi.org/10.1007/s11042-017-5069-z

    Article  Google Scholar 

  27. Kritikos, K., Plexousakis, D., and Paternò, F., Task model-driven realization of interactive application functionality through services, ACM Trans. Interact. Intell. Syst., 2014, vol. 3, no. 4. https://doi.org/10.1145/2559979

  28. Feron, H., Lehmann, A., and Josse, F., A generic architecture and validation considerations for tactical combat casualty care serious games, J. Def. Model. Simul., 2015, vol. 12, no. 3, pp. 319–334. https://doi.org/10.1177/1548512914546148

    Article  Google Scholar 

  29. Fanini, B., Pagano, A., and Ferdani, D., A novel immersive VR game model for recontextualization in virtual environments: the μ VRmodel, Multimodal Technol. Interact., 2018, vol. 2, no. 2. https://doi.org/10.3390/mti2020020

  30. Mestadi, W., Nafil, K., Touahni, R., and Messoussi, R., An assessment of serious games technology: toward an architecture for serious games design, Int. J. Comput. Games Technol., 2018, vol. 2018, p. 9834565. https://doi.org/10.1155/2018/9834565

  31. Zarraonandia, T., Diaz, P., and Aedo, I., Using combinatorial creativity to support end-user design of digital games, Multimed. Tools Appl., 2017, vol. 76, no. 6, pp. 9073–9098. https://doi.org/10.1007/s11042-016-3457-4

    Article  Google Scholar 

  32. Bozzon, A., Fraternali, P., Galli, L., and Karam, R., Modeling crowd sourcing scenarios in socially-enabled human computation applications, J. Data Semant., 2014, vol. 3, no. 3, pp. 169–188. https://doi.org/10.1007/s13740-013-0032-2

    Article  Google Scholar 

  33. Ferreira, C., Maia, L.F., de Salles, C., Trinta, F., and Viana, W., Modelling and transposition of location-based games, Entertain. Comput., 2019, vol. 30, p. 100295. https://doi.org/10.1016/j.entcom.2019.100295

  34. van Rozen, R., Languages of games and play: a systematic mMapping study, ACM Comput. Surv., 2021, vol. 53, no. 6, pp. 1–37. https://doi.org/10.1145/3412843

    Article  Google Scholar 

  35. Orji, R., Mandryk, R.L., and Vassileva, J., Improving the efficacy of games for change using personalization models, ACM Trans. Comput. Interact., 2017, vol. 24, no. 5. https://doi.org/10.1145/3119929

  36. Aleem, S., Capretz, L.F., and Ahmed, F., Critical success factors to improve the game development process from a developer’s perspective, J. Comput. Sci. Technol., 2016, vol. 31, no. 5, pp. 925–950. https://doi.org/10.1007/s11390-016-1673-z

    Article  Google Scholar 

  37. Minović, M., Milovanović, M., Šošević, U., and Conde González, M.Á., Visualisation of student learning model in serious games, Comput. Human Behav., 2015, vol. 47, pp. 98–107. https://doi.org/10.1016/j.chb.2014.09.005

    Article  Google Scholar 

  38. Rumeser, D. and Emsley, M., Design and evaluation of the project and program crashing games, J. Appl. Res. High. Educ., 2022, vol. 14, no. 1, pp. 471–488. https://doi.org/10.1108/JARHE-07-2017-0083

    Article  Google Scholar 

  39. Predescu, A., Arsene, D., Pahont, B., Mocanu, M., and Chiru, C., A serious gaming approach for crowdsensing in urban water infrastructure with blockchain support, Appl. Sci., 2021, vol. 11, no. 4, pp. 1–32. https://doi.org/10.3390/app11041449

    Article  Google Scholar 

  40. Furtado, L.S., De Souza, R.F., Lima, J.L.D.R., and Oliveira, S.R.B., Teaching method for software measurement process based on gamification or serious games: a systematic review of the literature, Int. J. Comput. Games Technol., 2021, vol. 2021, p. 8873997. https://doi.org/10.1155/2021/8873997

  41. Ojeda-Castelo, J.J., Piedra-Fernandez, J.A., Iribarne, L., and Bernal-Bravo, C., KiNEEt: application for learning and rehabilitation in special educational needs, Multimed. Tools Appl., 2018, vol. 77, no. 18, pp. 24013–24039. https://doi.org/10.1007/s11042-018-5678-1

    Article  Google Scholar 

  42. Yamin, M.M., Katt, B., and Nowostawski, M., Serious games as a tool to model attack and defense scenarios for cyber-security exercises, Comput. Secur., 2021, vol. 110, p. 102450. https://doi.org/10.1016/j.cose.2021.102450

  43. Tong, T., et al., Rapid deployment and evaluation of mobile serious games: a cognitive assessment case study, Procedia Comput. Sci., 2015, vol. 69, pp. 96–103. https://doi.org/10.1016/j.procs.2015.10.010

    Article  Google Scholar 

  44. Gibson, D.C. and Webb, M.E., Data science in educational assessment, Educ. Inf. Technol., 2015, vol. 20, no. 4, pp. 697–713. https://doi.org/10.1007/s10639-015-9411-7

    Article  Google Scholar 

  45. Khalili-Mahani, N., et al., For whom the games toll: a qualitative and intergenerational evaluation of what is serious in games for older adults, Comput. Games J., 2020, no. 0123456789. https://doi.org/10.1007/s40869-020-00103-7

  46. Rieger. C. and Majchrzak, T. A., Towards the definitive evaluation framework for cross-platform app development approaches, J. Syst. Software, 2019, vol. 153, pp. 175–199. https://doi.org/10.1016/j.jss.2019.04.001

    Article  Google Scholar 

  47. Koch, J., Gomse, M., and Schüppstuhl, T., Digital game-based examination for sensor placement in context of an Industry 4.0 lecture using the unity 3D engine – a case study, Procedia Manuf., 2021, vol. 55, no. C, pp. 563–570. https://doi.org/10.1016/j.promfg.2021.10.077

    Article  Google Scholar 

  48. Coghlan, A. and Carter, L., Serious games as interpretive tools in complex natural tourist attractions, J. Hosp. Tour. Manag., 2020, vol. 42, pp. 258–265. https://doi.org/10.1016/j.jhtm.2020.01.010

    Article  Google Scholar 

  49. Carvalho, M.B., et al., An activity theory-based model for serious games analysis and conceptual design, Comput. Educ., 2015, vol. 87, pp. 166–181. https://doi.org/10.1016/j.compedu.2015.03.023

    Article  Google Scholar 

  50. Johnsen, H.M., Fossum, M., Vivekananda-Schmidt, P., Fruhling, A., and Slettebø, A., Teaching clinical reasoning and decision-making skills to nursing students: design, development, and usability evaluation of a serious game, Int. J. Med. Inform., 2016, vol. 94, pp. 39–48. https://doi.org/10.1016/j.ijmedinf.2016.06.014

    Article  Google Scholar 

  51. Kiili, K., Lainema, T., de Freitas, S., and Arnab, S., Flow framework for analyzing the quality of educational games, Entertain. Comput., 2014, vol. 5, no. 4, pp. 367–377. https://doi.org/10.1016/j.entcom.2014.08.002

    Article  Google Scholar 

  52. Gray, S.I., Robertson, J., Manches, A., and Rajendran, G., BrainQuest: the use of motivational design theories to create a cognitive training game supporting hot executive function, Int. J. Hum. Comput. Stud., 2019, vol. 127, pp. 124–149. https://doi.org/10.1016/j.ijhcs.2018.08.004

    Article  Google Scholar 

  53. Marcucci, E., Gatta, V., and Le Pira, M., Gamification design to foster stakeholder engagement and behavior change: an application to urban freight transport, Transp. Res. Part A Policy Pract., 2018, vol. 118, pp. 119–132. https://doi.org/10.1016/j.tra.2018.08.028

    Article  Google Scholar 

  54. Xu, F., Buhalis, D., and Weber, J., Serious games and the gamification of tourism, Tour. Manag., 2017, vol. 60, pp. 244–256. https://doi.org/10.1016/j.tourman.2016.11.020

    Article  Google Scholar 

  55. Huang, H., Ng, K.H., Bedwell, B., and Benford, S., A card-based internet of things game ideation tool for museum context, J. Ambient Intell. Humaniz. Comput., 2021, vol. 12, no. 10, pp. 9229–9240. https://doi.org/10.1007/s12652-020-02627-2

    Article  Google Scholar 

  56. Vardaxoglou, G. and Baralou, E., Developing a platform for serious gaming: open innovation through closed innovation, Procedia Comput. Sci., 2012, vol. 15, pp. 111–121, https://doi.org/10.1016/j.procs.2012.10.063

    Article  Google Scholar 

  57. De Freitas, S. and Routledge, H., Designing leadership and soft skills in educational games: the e-leadership and soft skills educational games design model (ELESS), Br. J. Educ. Technol., 2013, vol. 44, no. 6, pp. 951–968. https://doi.org/10.1111/bjet.12034

    Article  Google Scholar 

  58. van Dooren, M.M.M., Siriaraya, P., Visch, V., Spijkerman, R., and Bijkerk, L., Reflections on the design, implementation, and adoption of a gamified eHealth application in youth mental healthcare, Entertain. Comput., 2019, vol. 31, p. 100305. https://doi.org/10.1016/j.entcom.2019.100305

  59. Seaborn, K. and Fels, D.I., Gamification in theory and action: a survey, Int. J. Hum. Comput. Stud., 2015, vol. 74, pp. 14–31. https://doi.org/10.1016/j.ijhcs.2014.09.006

    Article  Google Scholar 

  60. Ahmad, N.B., Barakji, S.A.R., Shahada, T.M.A., and Anabtawi, Z.A., How to launch a successful video game: a framework, Entertain. Comput., 2017, vol. 23, pp. 1–11. https://doi.org/10.1016/j.entcom.2017.08.001

    Article  Google Scholar 

  61. Urh, M., Vukovic, G., Jereb, E., and Pintar, R., The model for Introduction of gamification into E-learning in higher education, Procedia – Soc. Behav. Sci., 2015, vol. 197, pp. 388–397. https://doi.org/10.1016/j.sbspro.2015.07.154

    Article  Google Scholar 

  62. Padilla-Zea, N., Gutierrez, F.L., López-Arcos, J.R., Abad-Arranz, A., and Paderewski, P., Modeling storytelling to be used in educational video games, Comput. Human Behav., 2014, vol. 31, no. 1, pp. 461–474. https://doi.org/10.1016/j.chb.2013.04.020

    Article  Google Scholar 

  63. Fischinger, D., et al., Hobbit, a care robot supporting independent living at home: first prototype and lessons learned, Rob. Auton. Syst., 2016, vol. 75, pp. 60–78. https://doi.org/10.1016/j.robot.2014.09.029

    Article  Google Scholar 

  64. Front, A., Rieu, D., Santorum, M., and Movahedian, F., A participative end-user method for multi-perspective business process elicitation and improvement, Software Syst. Model., 2017, vol. 16, no. 3, pp. 691–714. https://doi.org/10.1007/s10270-015-0489-6

    Article  Google Scholar 

  65. Räisänen, T., Ypsilanti, A., Ropes, D., Vivas, A.B., Viitala, M., and Ijäs, T., Examining the requirements for an intergenerational learning game, Educ. Inf. Technol., 2014, vol. 19, no. 3, pp. 531–547. https://doi.org/10.1007/s10639-014-9324-x

    Article  Google Scholar 

  66. Kourouthanassis, P.E., Boletsis, C., and Lekakos, G., Demystifying the design of mobile augmented reality applications, Multimed. Tools Appl., 2013, vol. 74, no. 3, pp. 1045–1066. https://doi.org/10.1007/s11042-013-1710-7

    Article  Google Scholar 

  67. Shahri, A., Hosseini, M., Taylor, J., Stefanidis, A., Phalp, K., and Ali, R., Engineering Digital Motivation in Businesses: a Modelling and Analysis Framework, London: Springer, 2019, vol. 1.

    Google Scholar 

  68. Priego-Roche, L.M., Front, A., and Rieu, D., A framework for virtual organization requirements, Requir. Eng., 2016, vol. 21, no. 4, pp. 439–460. https://doi.org/10.1007/s00766-015-0223-5

    Article  Google Scholar 

  69. Hersh, M. and Leporini, B., Editorial: serious games, education and inclusion for disabled people, Br. J. Educ. Technol., 2018, vol. 49, no. 4, pp. 587–595. https://doi.org/10.1111/bjet.12650

    Article  Google Scholar 

  70. Terras, M.M. and Boyle, E.A., Integrating games as a means to develop e-learning: Insights from a psychological perspective, Br. J. Educ. Technol., 2019, vol. 50, no. 3, pp. 1049–1059. https://doi.org/10.1111/bjet.12784

    Article  Google Scholar 

  71. Dimeff, L.A. and Koerner, K., Fulfilling the promise of behavioral health technologies to improve public health impact and reduce public health disparities: a commentary, Clin. Psychol. Sci. Pract., 2019, vol. 26, no. 1, pp. 1–4. https://doi.org/10.1111/cpsp.12276

    Article  Google Scholar 

  72. Peñeñory, V.M., Collazos, C.A., Bacca, Á.F., Manresa-Yee, C., Cano, S.P., and Fadoun, H.M., APRehab: a methodology for serious games design oriented to psychomotor rehabilitation in children with hearing impairments, Univers. Access Inf. Soc., 2020, no. 0123456789. https://doi.org/10.1007/s10209-020-00728-5

  73. Ramos-Aguiar, L.R. and Alvarez-Rodriguez, F.J., Teaching emotions in children with autism spectrum disorder through a computer program with tangible interfaces, Rev. Iberoam. Tecnol. del Aprendiz., 2021 vol. 16, no. 4, pp. 365–371. https://doi.org/10.1109/RITA.2021.3125901

    Article  Google Scholar 

  74. Böckle, M., Novak, J., and Bick, M., Exploring gamified persuasive system design for energy saving, J. Enterp. Inf. Manag., 2020, vol. 33, no. 6, pp. 1337–1356. https://doi.org/10.1108/JEIM-02-2019-0032

    Article  Google Scholar 

  75. Wang, X., Goh, D.H.L., Lim, E.P., and Vu, A.W.L., Understanding the determinants of human computation game acceptance: the effects of aesthetic experience and output quality, Online Inf. Rev., 2016, vol. 40, no. 4, pp. 481–496. https://doi.org/10.1108/OIR-06-2015-0203

    Article  Google Scholar 

  76. Carrión-Toro, M., Santorum, M., Acosta-Vargas, P., Aguilar, J., and Pérez, M., iPlus a user-centered methodology for serious games design, Appl. Sci., 2020, vol. 10, no. 24, pp. 1–33. https://doi.org/10.3390/app10249007

    Article  Google Scholar 

  77. Kondylakis, H., et al., Patient empowerment for cancer patients through a novel ICT infrastructure, J. Biomed. Inform., 2020, vol. 101, p. 103342. https://doi.org/10.1016/j.jbi.2019.103342

  78. Cano, S., Collazos, C.A., Flórez Aristizábal, L., Gonzalez, C.S., and Moreira, F., Towards a methodology for user experience assessment of serious games with children with cochlear implants, Telemat. Inf., 2018, vol. 35, no. 4, pp. 993–1004. https://doi.org/10.1016/j.tele.2017.09.011

    Article  Google Scholar 

  79. Fanfarelli, J.R., McDaniel, R., and Crossley, C., Adapting UX to the design of healthcare games and applications, Entertain. Comput., 2018, vol. 28, pp. 21–31. https://doi.org/10.1016/j.entcom.2018.08.001

    Article  Google Scholar 

  80. Fernandez-Cervantes, V., Neubauer, N., Hunter, B., Stroulia, E., and Liu, L., VirtualGym: a kinect-based system for seniors exercising at home, Entertain. Comput., 2018, vol. 27, pp. 60–72. https://doi.org/10.1016/j.entcom.2018.04.001

    Article  Google Scholar 

  81. Menghi, R., Papetti, A., and Germani, M., Product service platform to improve care systems for elderly living at home, Heal. Policy Technol., 2019, vol. 8, no. 4, pp. 393–401. https://doi.org/10.1016/j.hlpt.2019.10.004

    Article  Google Scholar 

  82. Havukainen, M., Laine, T.H., Martikainen, T., and Sutinen, E., A case study on co-designing digital games with older adults and children: game elements, assets, and challenges, Comput. Games J., 2020, no. 0123456789. https://doi.org/10.1007/s40869-020-00100-w

  83. O’Connor, S., Shuttleworth, J., Colreavy-Donnelly, S., and Liarokapis, F., Assessing the perceived realism of agent grouping dynamics for adaptation and simulation, Entertain. Comput., 2019, vol. 32, p. 100323. https://doi.org/10.1016/j.entcom.2019.100323

  84. Johnson, C.M., McIlwain, S., Gray, O., Willson, B., and Vorderstrasse, A., Creating a sustainable collaborative consumer health application for chronic disease self-management, J. Biomed. Inform., 2017, vol. 71, pp. 198–206. https://doi.org/10.1016/j.jbi.2017.06.004

    Article  Google Scholar 

  85. López, S., Cervantes, J.A., Cervantes, S., Molina, J., and Cervantes, F., The plausibility of using unmanned aerial vehicles as a serious game for dealing with attention deficit-hyperactivity disorder, Cogn. Syst. Res., 2020, vol. 59, pp. 160–170. https://doi.org/10.1016/j.cogsys.2019.09.013

    Article  Google Scholar 

  86. Quint, F., Sebastian, K., and Gorecky, D., A mixed-reality learning environment, Procedia Comput. Sci., 2015, vol. 75, no. Vare, pp. 43–48. https://doi.org/10.1016/j.procs.2015.12.199

  87. Koivisto, J.M., Haavisto, E., Niemi, H., Haho, P., Nylund, S., and Multisilta, J., Design principles for simulation games for learning clinical reasoning: a design-based research approach, Nurse Educ. Today, 2018, vol. 60, pp. 114–120. https://doi.org/10.1016/j.nedt.2017.10.002

    Article  Google Scholar 

  88. Gerling, K.M., Linehan, C., Kirman, B., Kalyn, M.R., Evans, A.B., and Hicks, K.C., Creating wheelchair-controlled video games: challenges and opportunities when involving young people with mobility impairments and game design experts, Int. J. Hum. Comput. Stud., 2016, vol. 94, pp. 64–73. https://doi.org/10.1016/j.ijhcs.2015.08.009

    Article  Google Scholar 

  89. Cinquin, P.A., Guitton, P., and Sauzéon, H., Online e-learning and cognitive disabilities: a systematic review, Comput. Educ., 2019 vol. 130, pp. 152–167. https://doi.org/10.1016/j.compedu.2018.12.004

    Article  Google Scholar 

  90. Aebli, A., Tourists’ motives for gamified technology use, Ann. Tour. Res., 2019, vol. 78, p. 102753. https://doi.org/10.1016/j.annals.2019.102753

  91. Ingram, J. and Gaskell, P., Searching for meaning: co-constructing ontologies with stakeholders for smarter search engines in agriculture, NJAS – Wageningen J. Life Sci., 2019, vol. 90–91, p. 100300. https://doi.org/10.1016/j.njas.2019.04.006

  92. Scott, M.J., Spyridonis, F., and Ghinea, G., Designing for designers: towards the development of accessible ICT products and services using the VERITAS framework, Comput. Stand. Interfaces, 2015, vol. 42, pp. 113–124. https://doi.org/10.1016/j.csi.2015.05.004

    Article  Google Scholar 

  93. Tan, J.L., Goh, D.H.L., Ang, R.P., and Huan, V.S., Learning efficacy and user acceptance of a game-based social skills learning environment, Int. J. Child-Comput. Interact., 2016, vol. 9–10, pp. 1–19. https://doi.org/10.1016/j.ijcci.2016.09.001

    Article  Google Scholar 

  94. Lokshina, I.V. and Durkin, B.J., Redesigning the healthcare model to address obesity problem using the integration of processes and mobile technologies: facing a worldwide epidemic in an innovative manner, Wirel. Pers. Commun., 2017, vol. 96, no. 4, pp. 5483–5498. https://doi.org/10.1007/s11277-016-3752-4

    Article  Google Scholar 

  95. Hocine, N., Gouaich, A., Cerri, S.A., Mottet, D., Froger, J., and Laffont, I., Adaptation in serious games for upper-limb rehabilitation: an approach to improve training outcomes, User Model. User-adapt. Interact., 2015, vol. 25, no. 1, pp. 65–98. https://doi.org/10.1007/s11257-015-9154-6

    Article  Google Scholar 

  96. Vayanou, M., Ioannidis, Y., Loumos, G., and Kargas, A., How to Play Storytelling Games with Masterpieces: from Art Galleries to Hybrid Board Games, Berlin Heidelberg: Springer, 2019, vol. 6, no. 1.

  97. Martinho, D., Carneiro, J., Corchado, J.M., and Marreiros, G., A systematic review of gamification techniques applied to elderly care, Artif. Intell. Rev., 2020, no. 0123456789. https://doi.org/10.1007/s10462-020-09809-6

  98. Palumbo, F., et al., Reliability and human factors in ambient assisted living environments: the DOREMI case study, J. Reliab. Intell. Environ., 2017, vol. 3, no. 3, pp. 139–157. https://doi.org/10.1007/s40860-017-0042-1

    Article  Google Scholar 

  99. Ivanov, R., Blind-environment interaction through voice augmented objects, J. Multimodal User Interfaces, 2014, vol. 8, no. 4, pp. 345–365. https://doi.org/10.1007/s12193-014-0166-z

    Article  Google Scholar 

  100. Tuerk, P.W., Schaeffer, C.M., McGuire, J.F., Adams Larsen, M., Capobianco, N., and Piacentini, J., Adapting evidence-based treatments for digital technologies: a critical review of functions, tools, and the use of branded solutions, Curr. Psychiatry Rep., 2019, vol. 21, no. 10. https://doi.org/10.1007/s11920-019-1092-2

  101. Kosmas, P., et al., Enhancing accessibility in cultural heritage environments: considerations for social computing, Univers. Access Inf. Soc., 2019, vol. 19, pp. 471–482. https://doi.org/10.1007/s10209-019-00651-4

    Article  Google Scholar 

  102. Puigdomenech, E., et al., Promoting healthy teenage behaviour across three European countries through the use of a novel smartphone technology platform, PEGASO fit for future: study protocol of a quasi-experimental, controlled, multi-centre trial, BMC Med. Inform. Decis. Mak., 2019, vol. 19, no. 1, pp. 1–13. https://doi.org/10.1186/s12911-019-0958-x

    Article  Google Scholar 

  103. Nisiforou, E.A. and Zaphiris, P., Let me play: unfolding the research landscape on ICT as a play-based tool for children with disabilities, Univers. Access Inf. Soc., 2020, vol. 19, no. 1, pp. 157–167. https://doi.org/10.1007/s10209-018-0627-3

    Article  Google Scholar 

  104. Stuij, S.M., et al., Developing a digital communication training tool on information-provision in oncology: uncovering learning needs and training preferences, BMC Med. Educ., 2018, vol. 18, no. 1, pp. 1–12. https://doi.org/10.1186/s12909-018-1308-x

    Article  Google Scholar 

  105. Schließmann, D., et al., Trainer in a pocket – proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients, J. Neuroeng. Rehabil., 2018, vol. 15, no. 1, pp. 1–15. https://doi.org/10.1186/s12984-018-0389-4

    Article  Google Scholar 

  106. Reinkensmeyer, D.J., et al., How a diverse research ecosystem has generated new rehabilitation technologies: review of NIDILRR’s rehabilitation engineering research centers, J. Neuroeng. Rehabil., 2017, vol. 14, no. 1, pp. 1–53. https://doi.org/10.1186/s12984-017-0321-3

    Article  Google Scholar 

  107. Castelló, V., Traver, V.J., Serrano, B., Montoliu, R., and Botella, C., Assisting therapists in assessing small animal phobias by computer analysis of video-recorded sessions, Multimed. Tools Appl., 2017, vol. 76, no. 20, pp. 21033–21049. https://doi.org/10.1007/s11042-016-3997-7

    Article  Google Scholar 

  108. Santos, O.C., Kravcik, M., and Boticario, J.G., Preface to special issue on user modelling to support personalization in enhanced educational settings, Int. J. Artif. Intell. Educ., 2016, vol. 26, no. 3, pp. 809–820. https://doi.org/10.1007/s40593-016-0114-z

    Article  Google Scholar 

  109. Wüller, H., Behrens, J., Garthaus, M., Marquard, S., and Remmers, H., A scoping review of augmented reality in nursing, BMC Nurs., 2019, vol. 18, no. 1, pp. 1–11. https://doi.org/10.1186/s12912-019-0342-2

    Article  Google Scholar 

  110. Alnusair, A., Zhong, C., Rawashdeh, M., Hossain, M.S., and Alamri, A., Context-aware multimodal recommendations of multimedia data in cyber situational awareness, Multimed. Tools Appl., 2017, vol. 76, no. 21, pp. 22823–22843. https://doi.org/10.1007/s11042-017-4681-2

    Article  Google Scholar 

  111. Powell, L., Parker, J., and Harpin, V., What is the level of evidence for the use of currently available technologies in facilitating the self-management of difficulties associated with ADHD in children and young people? A systematic review, Eur. Child Adolesc. Psychiatry, 2018, vol. 27, no. 11, pp. 1391–1412. https://doi.org/10.1007/s00787-017-1092-x

    Article  Google Scholar 

  112. Campos, J.C., Abade, T., Silva, J.L., and Harrison, M.D., Don’t go in there! Using the APEX framework in the design of ambient assisted living systems, J. Ambient Intell. Humaniz. Comput., 2017, vol. 8, no. 4, pp. 551–566. https://doi.org/10.1007/s12652-016-0444-6

    Article  Google Scholar 

  113. Merilampi, S., Koivisto, A., and Sirkka, A., Designing serious games for special user groups – design for somebody approach, Br. J. Educ. Technol., 2018, vol. 49, no. 4, pp. 646–658. https://doi.org/10.1111/bjet.12631

    Article  Google Scholar 

  114. Terras, M.M., Boyle, E.A., Ramsay, J., and Jarrett, D., The opportunities and challenges of serious games for people with an intellectual disability, Br. J. Educ. Technol., 2018, vol. 49, no. 4, pp. 690–700. https://doi.org/10.1111/bjet.12638

    Article  Google Scholar 

  115. Bossavit, B. and Parsons, S., Outcomes for design and learning when teenagers with autism codesign a serious game: a pilot study, J. Comput. Assist. Learn., 2018, vol. 34, no. 3, pp. 293–305. https://doi.org/10.1111/jcal.12242

    Article  Google Scholar 

  116. Cano, A.R., Fernández-Manjón, B., and García-Tejedor, Á.J., Using game learning analytics for validating the design of a learning game for adults with intellectual disabilities, Br. J. Educ. Technol., 2018, vol. 49, no. 4, pp. 659–672. https://doi.org/10.1111/bjet.12632

    Article  Google Scholar 

  117. Hodge, P., et al., StreetWise: a valid ecology for a serious game in a secure forensic mental health setting, Procedia Comput. Sci., 2015, vol. 63, no. Icth, pp. 252–259. https://doi.org/10.1016/j.procs.2015.08.341

  118. Ganzeboom, M., Bakker, M., Beijer, L., Rietveld, T., and Strik, H., Speech training for neurological patients using a serious game, Br. J. Educ. Technol., 2018, vol. 49, no. 4, pp. 761–774. https://doi.org/10.1111/bjet.12640

    Article  Google Scholar 

  119. Perry, D., Robinson, J., Cruz, S., Aragon, C., Chowning, J.T., and Peters, M., Game design for bioinformatics and cyberinfrastructure learning: a parallel computing case study, Concurr. Comput. Pract. Exp., 2014, vol. 22, no. 6, pp. 685–701. https://doi.org/10.1002/cpe

    Article  Google Scholar 

  120. Leroi, I., Watanabe, K., Hird, N., and Sugihara, T., ‘Psychogeritechnology’ in Japan: exemplars from a super-aged society, Int. J. Geriatr. Psychiatry, 2018, vol. 33, no. 12, pp. 1533–1540. https://doi.org/10.1002/gps.4906

    Article  Google Scholar 

  121. Park, J., Mostafa, N.A., and Han, H.J., ‘StoryWeb’: a storytelling-based knowledge-sharing application among multiple stakeholders, Creat. Innov. Manag., 2020, vol. 29, no. 2, pp. 224–236. https://doi.org/10.1111/caim.12368

    Article  Google Scholar 

  122. Sharit, J., et al., The roles of health literacy, numeracy, and graph literacy on the usability of the VA’s personal health record by veterans, J. Usability Stud., 2014, vol. 9, no. 4, pp. 173–193.

    Google Scholar 

  123. Nunes, F., Verdezoto, N., Fitzpatrick, G., Kyng, M., Grönvall, E., and Storni, C., Self-care technologies in HCI: trends, tensions, and opportunities, ACM Trans. Comput. Interact., 2015, vol. 22, no. 6. https://doi.org/10.1145/2803173

  124. Spiel, K., Frauenberger, C., Keyes, O.S., and Fitzpatrick, G., Agency of autistic children in technology research – a critical literature review, ACM Trans. Comput. Interact., 2019, vol. 26, no. 6. https://doi.org/10.1145/3344919

  125. Reynolds, L.M., et al., StreetWise: developing a serious game to support forensic mental health service users’ preparation for discharge: a feasibility study, J. Psychiatr. Ment. Health Nurs., 2017, vol. 24, no. 4, pp. 185–193. https://doi.org/10.1111/jpm.12340

    Article  Google Scholar 

  126. Savazzi, F., Isernia, S., Jonsdottir, J., Di Tella, S., Pazzi, S., and Baglio, F., Engaged in learning neurorehabilitation: development and validation of a serious game with user-centered design, Comput. Educ., 2018, vol. 125, pp. 53–61. https://doi.org/10.1016/j.compedu.2018.06.001

    Article  Google Scholar 

  127. Robertson, J., Macvean, A., Fawkner, S., Baker, G., and Jepson, R.G., Savouring our mistakes: learning from the FitQuest project, Int. J. Child-Comput. Interact., 2018, vol. 16, pp. 55–67. https://doi.org/10.1016/j.ijcci.2017.12.003

    Article  Google Scholar 

  128. Adams, A., Hart, J., Iacovides, I., Beavers, S., Oliveira, M., and Magroudi, M., Co-created evaluation: Identifying how games support police learning, Int. J. Hum. Comput. Stud., 2019, vol. 132, pp. 34–44. https://doi.org/10.1016/j.ijhcs.2019.03.009

    Article  Google Scholar 

  129. Rodrigues, L.F., Costa, C.J., and Oliveira, A., Gamification: a framework for designing software in e-banking, Comput. Human Behav., 2016, vol. 62, pp. 620–634. https://doi.org/10.1016/j.chb.2016.04.035

    Article  Google Scholar 

  130. Françoise, J. and Bevilacqua, F., Motion-sound mapping through interaction: an approach to user-centered design of auditory feedback using machine learning, ACM Trans. Interact. Intell. Syst., 2018, vol. 8, no. 2, pp. 1–30. https://doi.org/10.1145/3211826

    Article  Google Scholar 

  131. Kayali, F., et al., Design considerations for a serious game for children after hematopoietic stem cell transplantation, Entertain. Comput., 2016, vol. 15, pp. 57–73. https://doi.org/10.1016/j.entcom.2016.04.002

    Article  Google Scholar 

  132. Salomão, R.C.S., Rebelo, F., and Rodríguez, F.G., Defining personas of university students for the development of a digital educational game to learn portuguese as a foreing language, Procedia Manuf., 2015, vol. 3, no. Ahfe, pp. 6214–6222. https://doi.org/10.1016/j.promfg.2015.07.941

  133. Ramos-Vega, M.C., Palma-Morales, V.M., Pérez-Marín, D., and Moguerza, J.M., Stimulating children’s engagement with an educational serious videogame using lean UX co-design, Entertain. Comput., 2021, vol. 38, no. 3, p. 100405. https://doi.org/10.1016/j.entcom.2021.100405

  134. van der Lubbe, L.M., Gerritsen, C., Klein, M.C.A., and Hindriks, K.V., Empowering vulnerable target groups with serious games and gamification, Entertain. Comput., 2021, vol. 38, p. 100402. https://doi.org/10.1016/j.entcom.2020.100402

  135. Bennani, S., Maalel, A., and Ben Ghezala, H., Age-learn: ontology-based representation of personalized gamification in e-learning, Procedia Comput. Sci., 2020, vol. 176, pp. 1005–1014. https://doi.org/10.1016/j.procs.2020.09.096

    Article  Google Scholar 

  136. Stamm, O., Dahms, R., and Müller-Werdan, U., Virtual reality in pain therapy: a requirements analysis for older adults with chronic back pain, J. Neuroeng. Rehabil., 2020, vol. 7, p. 129. https://doi.org/10.1186/s12984-020-00753-8

    Article  Google Scholar 

  137. Spil, T.A.M., Romijnders, V., Sundaram, D., Wickramasinghe, N., and Kijl, B., Are serious games too serious? Diffusion of wearable technologies and the creation of a diffusion of serious games model, Int. J. Inf. Manag., 2021, vol. 58, p. 102202. https://doi.org/10.1016/j.ijinfomgt.2020.102202

  138. Teruel, M.A., Navarro, E., González, P., López-Jaquero, V., and Montero, F., Applying thematic analysis to define an awareness interpretation for collaborative computer games, Inf. Software Technol., 2016, vol. 74, pp. 17–44. https://doi.org/10.1016/j.infsof.2016.01.009

    Article  Google Scholar 

  139. Bruno, F., et al., Virtual dives into the underwater archaeological treasures of South Italy, Virtual Reality, 2018, vol. 22, no. 2, pp. 91–102. https://doi.org/10.1007/s10055-017-0318-z

    Article  Google Scholar 

  140. Koutsabasis, P. and Vosinakis, S., Kinesthetic interactions in museums: conveying cultural heritage by making use of ancient tools and (re-) constructing artworks, Virtual Reality, 2018, vol. 22, no. 2, pp. 103–118. https://doi.org/10.1007/s10055-017-0325-0

    Article  Google Scholar 

  141. Speake, H., Copeland, R.J., Till, S.H., Breckon, J.D., Haake, S., and Hart, O., Embedding physical activity in the heart of the NHS: the need for a whole-system approach, Sport. Med., 2016 vol. 46, no. 7, pp. 939–946. https://doi.org/10.1007/s40279-016-0488-y

    Article  Google Scholar 

  142. Sigala, M., The application and impact of gamification funware on trip planning and experiences: the case of TripAdvisor’s funware, Electron. Mark., 2015, vol. 25, no. 3, pp. 189–209. https://doi.org/10.1007/s12525-014-0179-1

    Article  Google Scholar 

  143. Bonet, N., von Barnekow, A., Mata, M.T., Gomar, C., and Tost, D., Three-dimensional game-based cardiopulmonary bypass training, Clin. Simul. Nurs., 2021, vol. 50, pp. 81–91.e1. https://doi.org/10.1016/j.ecns.2020.08.007

    Article  Google Scholar 

  144. Zhang-Kennedy, L. and Chiasson, S., A systematic review of multimedia tools for cybersecurity awareness and education, ACM Comput. Surv., 2021, vol. 54, no. 1, pp. 1–39. https://doi.org/10.1145/3427920

    Article  Google Scholar 

  145. Schulz, R., Smaradottir, B., Prinz, A., and Hara, T., User-centered design of a scenario-based serious game: game-based teaching of future healthcare, IEEE Trans. Games, 2020, vol. 12, no. 4, pp. 376–385. https://doi.org/10.1109/TG.2020.3033437

    Article  Google Scholar 

  146. Agbo, F.J., Oyelere, S.S., Suhonen, J., and Laine, T.H., Co-design of mini games for learning computational, Educ. Inf. Technol., 2021, vol. 26, no. 5, pp. 5815–5849. https://doi.org/10.1007/s10639-021-10515-1

    Article  Google Scholar 

  147. Woolford, K. and Dunn, S., Experimental archaeology and games: challenges of inhabiting virtual heritage, J. Comput. Cult. Herit., 2013, vol. 6, no. 4, pp. 1–15. https://doi.org/10.1145/2532630.2532632

    Article  Google Scholar 

  148. Gilbert, S.B., Jang, W., Garcia, A., Krone, N., Ramezani, M., and Doty, K., Re-Solution-Katrina edition: moving a face-to-face game online, Proc. Hum. Factors Ergon. Soc., 2017, vol. 61, no. 1, pp. 356–360. https://doi.org/10.1177/1541931213601571

    Article  Google Scholar 

  149. Wasil, A.R., Venturo-Conerly, K.E., Shingleton, R.M., and. Weisz, J.R, A review of popular smartphone apps for depression and anxiety: assessing the inclusion of evidence-based content, Behav. Res. Ther., 2019, vol. 123, p. 103498. https://doi.org/10.1016/j.brat.2019.103498

  150. Li, Q., Enactivism and teacher instructional game building: an inquiry of theory adoption and design consideration, Educ. Technol. Res. Dev., 2018, vol. 66, no. 6, pp. 1339–1358. https://doi.org/10.1007/s11423-018-9584-z

    Article  Google Scholar 

  151. Lorenz, T., Weiss, A., and Hirche, S., Synchrony and reciprocity: key mechanisms for social companion robots in therapy and care, Int. J. Soc. Robot., 2016, vol. 8, no. 1, pp. 125–143. https://doi.org/10.1007/s12369-015-0325-8

    Article  Google Scholar 

  152. Money, A. and Coughlan, J., Team-taught versus individually taught undergraduate education: a qualitative study of student experiences and preferences, High. Educ., 2016, vol. 72, no. 6, pp. 797–811. https://doi.org/10.1007/s10734-015-9976-5

    Article  Google Scholar 

  153. Corrêa Souza, A.C., Nunes, F.L.S., and Delamaro, M.E., An automated functional testing approach for virtual reality applications, Software Test. Verif. Reliab., 2018, vol. 28, no. 8, pp. 1–31. https://doi.org/10.1002/stvr.1690

    Article  Google Scholar 

  154. Pyae, A., Liukkonen, T., Saarenpää, T., Luimula, M., Granholm, P., and Smed, J., When Japanese elderly people play a Finnish physical exercise game: a usability study, J. Usability Stud., 2016, vol. 11, no. 4, pp. 131–152.

    Google Scholar 

  155. Konstantakis, M. and Caridakis, G., Adding culture to UX: UX research methodologies and applications in cultural heritage, J. Comput. Cult. Herit., 2020, vol. 13, no. 1, pp. 1–17. https://doi.org/10.1145/3354002

    Article  Google Scholar 

  156. Tao, G., Garrett, B., Taverner, T., Cordingley, E., and Sun, C., Immersive virtual reality health games: a narrative review of game design, J. Neuroeng. Rehabil., 2021, vol. 18, no. 1, pp. 1–21. https://doi.org/10.1186/s12984-020-00801-3

    Article  Google Scholar 

  157. Pedraza-Hueso, M., Martín-Calzón, S., Díaz-Pernas, F.J., and Martínez-Zarzuela, M., Rehabilitation using kinect-based games and virtual reality, Procedia Comput. Sci., 2015, vol. 75, no. Vare, pp. 161–168. https://doi.org/10.1016/j.procs.2015.12.233

  158. Fonseca, D. and García-Peñalvo, F.J., Interactive and collaborative technological ecosystems for improving academic motivation and engagement, Univers. Access Inf. Soc., 2019, vol. 18, no. 3, pp. 423–430. https://doi.org/10.1007/s10209-019-00669-8

    Article  Google Scholar 

  159. Bellotti, F., Berta, R., De Gloria, A., D’Ursi, A., and Fiore, V., A serious game model for cultural heritage, J. Comput. Cult. Herit., 2012, vol. 5, no. 4. https://doi.org/10.1145/2399180.2399185

  160. Tong, T., Chignell, M., and Sieminowski, T., Case study: a serious game for neurorehabilitation assessment, Procedia Comput. Sci., 2015, vol. 69, pp. 125–131. https://doi.org/10.1016/j.procs.2015.10.013

    Article  Google Scholar 

  161. Valladares-Rodriguez, S., Fernández-Iglesias, M.J., Anido-Rifón, L., Facal, D., Rivas-Costa, C., and Pérez-Rodríguez, R., Touchscreen games to detect cognitive impairment in senior adults. A user-interaction pilot study, Int. J. Med. Inform., 2019, vol. 127, pp. 52–62. https://doi.org/10.1016/j.ijmedinf.2019.04.012

    Article  Google Scholar 

  162. Luz, S., Masoodian, M., Cesario, R.R., and Cesario, M., Using a serious game to promote community-based awareness and prevention of neglected tropical diseases, Entertain. Comput., 2016, vol. 15, pp. 43–55. https://doi.org/10.1016/j.entcom.2015.11.001

    Article  Google Scholar 

  163. Hidalgo-Mazzei, D., et al., OpenSIMPLe: a real-world implementation feasibility study of a smartphone-based psychoeducation programme for bipolar disorder, J. Affect. Disord., 2018, vol. 241, pp. 436–445. https://doi.org/10.1016/j.jad.2018.08.048

    Article  Google Scholar 

  164. Martinez-González, C.L., Camargo-Fajardo, M.C.C., Segura-Medina, P., and Quezada-Bolaños, P., Therapeutic patient education with learning objects improves asthma control in Mexican children, J. Med. Syst., 2020, vol. 44, no. 4. https://doi.org/10.1007/s10916-020-1539-3

  165. Benito-Santos, A., Dorn, A., Gómez, A.G.L., Palfinger, T., Sánchez, R.T., and Wandl-Vogt, E., Playing design: a case study on applying gamification to construct a serious game with youngsters at social risk, J. Comput. Cult. Herit., 2021, vol. 14, no. 2. https://doi.org/10.1145/3427380

  166. Kiili, K., De Freitas, S., Arnab, S., and Lainema, T., The design principles for flow experience in educational games, Procedia Comput. Sci., 2012, vol. 15, pp. 78–91. https://doi.org/10.1016/j.procs.2012.10.060

    Article  Google Scholar 

  167. Ghanbari, H., Similä, J., and Markkula, J., Utilizing online serious games to facilitate distributed requirements elicitation, J. Syst. Software, 2015, vol. 109, pp. 32–49. https://doi.org/10.1016/j.jss.2015.07.017

    Article  Google Scholar 

  168. De Troyer, O. and Janssens, E., Supporting the requirement analysis phase for the development of serious games for children, Int. J. Child-Comput. Interact., 2014, vol. 2, no. 2, pp. 76–84. https://doi.org/10.1016/j.ijcci.2014.05.001

    Article  Google Scholar 

  169. Sobrino-Duque, R., Martínez-Rojo, N., Carrillo-de-Gea, J.M., López-Jiménez, J.J., Nicolás, J., and Fernández-Alemán, J.L., Evaluating a gamification proposal for learning usability heuristics: Heureka, Int. J. Hum. Comput. Stud., 2022, vol. 161, p. 102774. https://doi.org/10.1016/j.ijhcs.2022.102774

  170. Howes, S.C., Charles, D., Pedlow, K., Wilson, I., Holmes, D., and McDonough, S., User-centred design of an active computer gaming system for strength and balance exercises for older adults, J. Enabling Technol., 2019, vol. 13, no. 2, pp. 101–111. https://doi.org/10.1108/JET-12-2018-0057

    Article  Google Scholar 

  171. Harrington, M.C.R., The virtual trillium trail and the empirical effects of freedom and fidelity on discovery-based learning, Virtual Real., 2012, vol. 16, no. 2, pp. 105–120. https://doi.org/10.1007/s10055-011-0189-7

    Article  Google Scholar 

  172. Bontchev, B., Antonova, A., Terzieva, V., and Dankov, Y., “Let us save Venice’ – an educational online maze game for climate resilience, Sustainability, 2022, vol. 14, no. 1. https://doi.org/10.3390/su14010007

  173. Shohieb, S.M., Doenyas, C., and Elhady, A., Dynamic difficulty adjustment technique-based mobile vocabulary learning game for children with autism spectrum disorder, Entertain. Comput., 2022, vol. 42, p. 100495.

  174. Cornejo, R., et al., Serious games for basic learning mechanisms: reinforcing Mexican children’s gross motor skills and attention, Pers. Ubiquitous Comput., 2021, vol. 25, no. 2, pp. 375–390. https://doi.org/10.1007/s00779-021-01529-0

    Article  Google Scholar 

  175. Bisadi, M. and Chua, A.Y.K., DGIST: a digital game for international students’ adjustment, Interact. Technol. Smart Educ., 2014, vol. 11, no. 1, pp. 15–31. https://doi.org/10.1108/ITSE-10-2013-0023

    Article  Google Scholar 

  176. Ng, Y.Y.N., Khong, C.W., and Nathan, R.J., Evaluating affective user-centered design of video games using qualitative methods, Int. J. Comput. Games Technol., 2018, no. 2, pp. 1–13. https://doi.org/10.1155/2018/3757083

  177. Ali, Z. and Usman, M., A framework for game engine selection for gamification and serious games, Proc. Future Technologies Conf. FTC 2016, San Francisco, 2016, pp. 1199–1207. https://doi.org/10.1109/FTC.2016.7821753

  178. Panach, J.I., Pederiva, I., España, S., and Pastor, Ó., Generación Automática de Interfaces a Partir de Patrones Estructurales de Tareas.

  179. Vanden Abeele, V., et al., P-III: a player-centered, iterative, interdisciplinary and integrated framework for serious game design and development, Commun. Comput. Inf. Sci., 2012, vol. 280 CCIS, pp. 82–86. https://doi.org/10.1007/978-3-642-33814-4_14

    Book  Google Scholar 

  180. Gonzalez Sánchez, J.L., Padilla Zea, N., Gutierrez, F.L., and Cabrera, M.J., De la Usabilidad a la Jugabilidad: Diseno de Videojuegos Centrado en el Jugador, Proc. 9th Congr. Int. Interaccion, Albacete, June 9–11, 2008, pp. 1–10.

  181. Kuznetsov, M.B., UML model transformation and its application to MDA technology, Program. Comput. Software, 2007, vol. 33, pp. 44–53. https://doi.org/10.1134/S0361768807010069

    Article  MathSciNet  MATH  Google Scholar 

  182. Gorshkova, E.A., Novikov, B.A., Belov, D.D., Gurov, V.S., and Spiridonov, S.V., A UML-based modeling of web application controller, Program. Comput. Software, 2005, vol. 31, pp. 29–33. https://doi.org/10.1007/s11086-005-0010-z

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially developed under the support of the National Council of Science and Technology (CONACYT-Mexico) in the scope of the project “Infraestructura para Agilizar el Desarrollo de Sistemas Centrados en el Usuario” (Cátedras, Ref. 3053). In addition, the authors thank CONACYT for the doctoral scholarship (number 395377) granted to the first author. We also the Universidad Veracruzana for the support in the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. O. Silva-Vásquez, V. Y. Rosales-Morales or E. Benítez-Guerrero.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Vásquez, P.O., Rosales-Morales, V.Y. & Benítez-Guerrero, E. Automatic Code Generation of User-centered Serious Games: A Decade in Review. Program Comput Soft 48, 685–701 (2022). https://doi.org/10.1134/S0361768822080187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768822080187

Keywords:

Navigation