Abstract
A class of consistent difference schemes for incompressible Navier–Stokes equations in physical variables and their differential approximations are considered using an algorithm for Gröbner basis construction. Results of investigating the first differential approximations of these schemes, which are obtained by using the authors' programs implemented in the SymPy computer algebra system, are presented. For the difference schemes under consideration, the quadratic dependence of the error for large Reynolds numbers and the inversely proportional dependence for creeping currents are analyzed.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1989, 3rd ed.
Blinkov, Yu.A. and Mozzhilkin, V.V., Generation of difference schemes for the Burgers equation by constructing Gröbner bases, Program. Comput. Software, 2006, vol. 32, pp. 114–117.
Gerdt, V.P., Blinkov, Yu.A., and Mozzhilkin, V.V., Gröbner bases and generation of difference schemes for partial differential equations, SIGMA, 2006, vol. 51, no. 2.
Buchberger, B., Gröbner bases: A Buchberger algorithmic method in polynomial ideal theory, Recent Trends Multidimens. Syst. Theor., Bose, N.K., Ed., Reidel, 1985, vol. 6, pp. 184–232.
Shokin, Yu.I. and Yanenko, N.N., Metod differentsial’nogo priblizheniya. Primenenie k gazovoi dinamike (Method of Differential Approximation: Application to Gas Dynamics), Novosibirsk: Nauka, 1985.
Blinkov, Yu.A., Gerdt, V.P., and Marinov, K.B., Discretization of quasilinear evolution equations by computer algebra methods, Program. Comput. Software, 2017, vol. 43, pp. 84–89.
Zhang, X., Gerdt, V.P., and Blinkov, Y.A., Algebraic construction of a strongly consistent, permutationally symmetric and conservative difference scheme for 3D steady Stokes flow, Symmetry, 2019, vol. 269, no. 11.
Blinkov, A.Yu., Malykh, M.D., and Sevast’yanov, L.A., On differential approximations of difference schemes, Izv. Sarat. Univ., Nov. Ser., Ser. Mat. Mekh. Inf., 2021, pp. 472–488.
Gerdt, V.P. and Robertz, D., Consistency of finite difference approximations for linear PDE systems and its algorithmic verification, Proc. ISSAC, Watt, S., Ed., 2010, pp. 53–59.
Gerdt, V.P., Consistency analysis of finite difference approximations to PDE systems, Math. Model. Comput. Phys., Lect. Notes Comput. Sci., 2012, vol. 7125, pp. 28–42.
Scala, R.L., Gröbner bases and gradings for partial difference ideals, Math. Comput., 2015, no. 84, pp. 959–985.
Gerdt, V.P. and Blinkov, Yu.A., Involution and difference schemes for the Navier–Stokes equations, Comput. Algebra Sci. Comput., Lect. Notes Comput. Sci., Gerdt, V.P., Mayr, E.W., and Vorozhtsov, E.V., Eds., 2009, vol. 5743, pp. 94–105.
Amodio, P., Blinkov, Yu.A., Gerdt, V.P., and La Scala, R., On consistency of finite difference approximations to the Navier–Stokes equations, Comput. Algebra Sci. Comput., Lect. Notes Comput. Sci., Gerdt, V.P., Koepf, W., Mayr, E.W., and Vorozhtsov, E.V., Eds., 2013, vol. 8136, pp. 46–60.
Amodio, P., Blinkov, Yu.A., Gerdt, V.P., and Scala, R.La., Algebraic construction and numerical behavior of a new s-consistent difference scheme for the 2D Navier–Stokes equations, Appl. Math. Comput., 2017, no. 314, pp. 408–421.
Blinkov, Yu.A., Gerdt, V.P., Lyakhov, D.A., and Michels, D.L., A strongly consistent finite difference scheme for steady Stokes flow and its modified equations, Comput. Algebra Sci. Comput., Lect. Notes Comput. Sci., Gerdt, V.P., Koepf, W., Mayr, E.W., and Vorozhtsov, E.V., Eds., 2018, vol. 11077, pp. 67–81.
Michels, D.L., Gerdt, V.P., Blinkov, Y.A., and Lyakhov, D.A., On the consistency analysis of finite difference approximations, J. Math. Sci. (U.S.), 2019, no. 5, pp. 665–677.
Gerdt, V.P., Robertz, D., and Blinkov, Yu.A., Strong consistency and Thomas decomposition of finite difference approximations to systems of partial differential equations, 2019.
Cartan, E., Sur certaines expressions différentielles et le problème de Pfaff, Annales scientifiques de l’École Normale Supérieure, Sér. 3, 1899, no. 16, pp. 239–332.
Kähler, E., Einführung in die Theorie der Systeme von Differentialgleichungen, Hamburger mathematische Einzelschriften, 1934, vol. 4.
Riquier, C., Les Systèmes d’Equations aux Dérivées Partielles, Paris: Gauthier-Villars, 1910.
Harlow, F.H. and Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free, Phys. Fluids, 1965, no. 8, pp. 2182–2189.
Buchberger, B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal, Ph. D. Thesis, Universiät Innsbruck, 1965.
Taylor, G.I., On the decay of vortices in a viscous fluid, Philos. Mag., 1923, vol. 46, pp. 671–674.
Kovasznay, L.I.G., Laminar flow behind a two-dimensional grid, Math. Proc. Cambridge Philos. Soc., 1948, vol. 44, no. 1, pp. 58–62.
Funding
This work was supported by the Russian Science Foundation, project no. 20-11-20257.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Translated by Yu. Kornienko
Rights and permissions
About this article
Cite this article
Blinkov, Y.A., Rebrina, A.Y. Investigation of Difference Schemes for Two-Dimensional Navier–Stokes Equations by Using Computer Algebra Algorithms. Program Comput Soft 49, 26–31 (2023). https://doi.org/10.1134/S0361768823010024
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0361768823010024