Skip to main content
Log in

Analyzing the Influence of Thermal NDT Parameters on Test Performance

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Thermography is an imaging technique that uses the infrared radiation to create a thermal image. Due to changes induced in the thermal conductivity of materials, the superficial temperature pattern of a defected component can reveal delamination, voids, insertions, moisture, or changes in material continuity when heated. High power light can be used to produce, without contact, a slight increase in the temperature of the component that creates a specific thermal pattern in the vicinity of a defect. The aim of this work is to analyze the influence of thermal NDT parameters on the performance of composite materials boards with simulated defects test using lock-in thermography, and thus find the optimal parameters that maximizes the signal/noise ratio. Four samples were submitted to 60 thermal tests to evaluate the detectability performance c (defect with/defect depth). The results were processed using custom scripts developed in LabVIEW to crop, scale, and extract the thermal information at the sample' slots and sound areas. The results indicated that the parameter with higher influence is the stimulation duration. The best time to conduct a thermal analysis is also very important, which is usually right after the end of the stimulation in order to have the maximum contrast in the thermal images and to minimize the artifacts. In this work, the defect detectability was between 1.25 and 1.67, which shows an higher sensitivity than reported in previous works (c = 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Vasiliev, V.V. and Morozov, E.V., Mechanics and Analysis of Composite Materials, Amsterdam: Elsevier, 2001.

    Google Scholar 

  2. Paul E. Mix, Introduction to Nondestructive Testing: A Training Guide, New York: Wiley, 2005.

    Google Scholar 

  3. Maldague, X., Trends in Optical Nondestructive Testing, Amsterdam: Elsevier, 2000.

    Google Scholar 

  4. Maldague, X., Nondestructive Evaluation of Materials by Infrared Thermography, Berlin: Springer, 1993. https://doi.org/10.1007/978-1-4471-1995-1.

  5. Roberts, C.C., Jr., Infrared temperature measurement applied to engineering design analysis, Am. Soc. Mech. Eng., 1975, no. 75-WA/TM-3.

  6. Chatterjee, K., Tuli, S., Pickering, S.G., and Almond, D.P., A Comparison of the pulsed, lock-14 in and frequency modulated thermography nondestructive evaluation techniques, NDT & E Int., 2011, vol. 44, no. 7, pp. 655–667.

    Article  Google Scholar 

  7. Heesang Park, Manyong Choi, Jeounghak Park, and Wontae Kim, A study on detection of micro-cracks in the 17 dissimilar metal weld through ultrasound infrared thermography, Infrared Phys.& Technol., 2014, vol. 62, pp. 124—131. https://doi.org/10.1016/j.infrared.2013.10.006

    Article  CAS  Google Scholar 

  8. Junyan, L., Liqiang, L., and Yang, W., Experimental study on active infrared thermography as a NDI tool for carbon-carbon composites, Composites Part B, 2013, vol. 45, pp. 138–147.

    Article  CAS  Google Scholar 

  9. Keo, S.A., Brachelet, F., Breaban, F., and Defer, D., Defect detection in CFRP by infrared thermography with CO2 laser excitation compared to conventional lock-in infrared 24 thermography, Composites Part B 2015, vol. 69, pp. 1–5.

    Article  CAS  Google Scholar 

  10. Keo, S.A., Brachelet, F., Breaban, F., and Defer, D., Steel detection in reinforced concrete wall by microwave infrared thermography, NDT & E Int., 2014, vol. 62, pp. 172–177. https://doi.org/10.1016/j.ndteint.2013.12.002

  11. Liu, J., Tian, G.Y., Gao, B., Ren, W., and Meng, J.S., Investigation of thermal imaging sampling frequency for eddy current pulsed thermography, NDT & E Int., 2014, vol. 62, pp. 85–92. https://doi.org/10.1016/j.ndteint.2013.11.009

  12. Renshaw, J., Chen, J.C., Holland, S.D., and Thompson, R.B., The sources of heat generation in vibrothermography, NDT & E Int., 2011, vol. 44, pp. 736–739. https://doi.org/10.1016/j.ndteint.2011.07.012

    Article  Google Scholar 

  13. Chulkov, A.O., Gaverina, L., Pradere, C., Batsale, J.-C., and Vavilov, V.P., Water detection in honeycomb composite structures using terahertz thermography, Russ. J. Nondestr. Test., 2015, vol. 51, no. 8, pp. 520–523. https://doi.org/10.1134/S1061830915080033

    Article  Google Scholar 

  14. Giorleo, G., Meola, C., and Squillace, A., Analysis of defective carbon-epoxy by means of lock-in thermography, Res. Nondestr. Eval., 2000, vol. 12, pp. 241–250.

    Article  Google Scholar 

  15. Vavilov, V.P., Thermal nondestructive testing of materials and products: A review, Russ. J. Nondestr. Test., 2017, vol. 53, no. 10, pp. 707–730. https://doi.org/10.1134/S1061830917100072

    Article  Google Scholar 

  16. Busse, G. and Wu, D., Lock-in thermography for nondestructive evaluation of materials, Rev. Gén. Therm., 1998, vol. 37, pp. 693–703.

    Google Scholar 

  17. K. Kang, Man Yong Choi, Jeonghak Park, and Wontae Kim, Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography, NDT & E Int., 2008, vol. 41, pp. 119–124. https://doi.org/10.1016/j.ndteint.2007.08.006

    Article  CAS  Google Scholar 

  18. Avdelidis, N.P., Hawtin, B.C., Almond, D.P., Transient thermography in the assessment of defects of aircraft composites, NDT & E Int., 2003, vol. 36, pp. 433–439.

    Article  CAS  Google Scholar 

  19. Dudzik, S., Analysis of the accuracy of a neural algorithm for defect depth estimation using PCA processing from active thermography data, Infrared Phys. Technol., 2013, vol. 56, pp. 1–7, 2013. https://doi.org/10.1016/j.infrared.2012.08.006

  20. Zeng, Z., Li, C., Tao, N., Feng, L., and Cunlin Zhang, Depth prediction of non-air interface 11 defect using pulsed thermography, NDT & E Int., 2012, vol. 48, pp. 39–45. https://doi.org/10.1016/j.ndteint.2012.02.008

    Article  Google Scholar 

  21. Ringermacher, H., R. Archacki Jr., and Veronesi, W., US Patent 5711603, 1996.

  22. Lizaranzu, M., Lario, A., Chiminelli, A., and Amenabar, I., Non-destructive testing of composite materials by means of active thermography-based tools, Infrared Phys.& Technol., 2015, vol. 71, pp. 113–120.

    Article  CAS  Google Scholar 

  23. Christiane Maierhofer, Philipp Myrach, Mercedes Reischel, Henrik Steinfurth and Kunert, M., Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations, Composites Part B, 2014, vol. 57, pp. 35–46. https://doi.org/10.1016/j.compositesb.2013.09.036

  24. Dudzik, S., Characterization of material defects using active thermography and an artificial neural network, Metrol. Meas. Syst., 2013, vol. XX, pp. 491–500.

    Article  Google Scholar 

  25. Ishikawa, M., Hatta, H., Habuka, Y., Fukui, R., and Utsunomiya, S., Detecting deeper defects using pulse phase thermography, Infrared Phys. Technol., 2013, vol. 57, pp. 42–49. https://doi.org/. 27https://doi.org/10.1016/j.infrared.2012.11.009

  26. Montanini, R., Quantitative determination of subsurface defects in a reference specimen made of plexiglas by means of lock-in and pulse phase infrared thermography, Infrared Phys. Technol., 2010, vol. 53, pp. 363–371. https://doi.org/10.1016/j.infrared.2010.07.002

    Article  CAS  Google Scholar 

  27. Feuillet, V., Ibos, L., Fois, M., Dumoulin, J., and Candau, Y., Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling, NDT & E Int., 2012, vol. 51, pp. 58–67. https://doi.org/doi.org/10.1016/j.ndteint.2012.06.003

  28. Maierhofer, C., Röllig, M., Ehrig, K., Meinel, D., and Céspedes-Gonzales, G., Validation of flash thermography using computed tomography for characterizing inhomogeneities and defects in CFRP structures, Composites Part B, 2014, vol. 64, pp. 175–186.

    Article  CAS  Google Scholar 

  29. Shepard, S.M., US Patent 2005008215 (A1) and US7724925 (B2), 2010.

  30. Grys, S., Minkina, W., and Vokorokos, L., Automated characterisation of subsurface defectsby active IR thermographic testing—Discussion of step heating duration and defect depth determination, Infrared Phys. Technol., 2015, vol. 68, pp. 84–91.

    Article  CAS  Google Scholar 

  31. Maldague, X.P., Theory and Practice of Infrared Technology for Nondestructive Testing, New York: Wiley, 2001.

    Google Scholar 

  32. ASTM E 1316. Standard terminology for non-destructive examinations: Sec. J. Infrared examination, 2003.

  33. Bates, D., Smith, G., and Lu, D., Rapid thermal non-destructive testing of aircraft components, Composites Part B, 2000, vol. 31, pp. 175–185.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to acknowledge the Porto Biomechanics Laboratory (LABIOMEP) by facilitating the thermal camera to conduct the thermal tests. This research was funded by Fundação para a Ciência e a Tecnologia, projects LAETA UIDB/50022/2020 and UIDP/50022/2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to António Ramos Silva or Joaquim Mendes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

António Ramos Silva, Vaz, M., Leite, S.R. et al. Analyzing the Influence of Thermal NDT Parameters on Test Performance. Russ J Nondestruct Test 57, 727–737 (2021). https://doi.org/10.1134/S1061830921080039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921080039

Navigation