• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Parameterized (Approximate) Defective Coloring

Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2020), Parameterized (Approximate) Defective Coloring, SIAM Journal on Discrete Mathematics, 34, 2, p. 1084–1106. 10.1137/18M1223666

View/Open
LIPIcs-STACS-2018-10.pdf (544.9Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
SIAM Journal on Discrete Mathematics
Volume
34
Number
2
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
1084–1106
Publication identifier
10.1137/18M1223666
Metadata
Show full item record
Author(s)
Belmonte, Rémy
Lampis, Michael
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mitsou, Valia
Abstract (EN)
In Defective Coloring we are given a graph $G=(V,E)$ and two integers ${\chi_d},\Delta^*$ and are asked if we can partition $V$ into ${\chi_d}$ color classes, so that each class induces a graph of maximum degree $\Delta^*$. We investigate the complexity of this generalization of Coloring with respect to several well-studied graph parameters and show that the problem is W-hard parameterized by treewidth, pathwidth, tree-depth, or feedback vertex set if ${\chi_d}=2$. As expected, this hardness can be extended to larger values of ${\chi_d}$ for most of these parameters, with one surprising exception: we show that the problem is fixed parameter tractable (FPT) and parameterized by feedback vertex set for any ${\chi_d}\neq 2$, and hence 2-coloring is the only hard case for this parameter. In addition to the above, we give an exponential time hypothesis-based lower bound for treewidth and pathwidth, showing that no algorithm can solve the problem in $n^{o({{pw}})}$, essentially matching the complexity of an algorithm obtained with standard techniques. We complement these results by considering the problem's approximability and show that, with respect to $\Delta^*$, the problem admits an algorithm which for any $\epsilon>0$ runs in time $({{tw}}/\epsilon)^{O({{tw}})}$ and returns a solution with exactly the desired number of colors that approximates the optimal $\Delta^*$ within $(1+\epsilon)$. We also give a $({{tw}})^{O({{tw}})}$ algorithm which achieves the desired $\Delta^*$ exactly while 2-approximating the minimum value of ${\chi_d}$. We show that this is close to optimal, by establishing that no FPT algorithm can (under standard assumptions) achieve a better than 3/2-approximation to ${\chi_d}$, even when an extra constant additive error is also allowed.
Subjects / Keywords
Treewidth; Parameterized Complexity; Approximation; Coloring

Related items

Showing items related by title and author.

  • Thumbnail
    Parameterized (Approximate) Defective Coloring 
    Belmonte, Rémy; Mitsou, Valia (2018) Communication / Conférence
  • Thumbnail
    Defective Coloring on Classes of Perfect Graphs 
    Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2017) Communication / Conférence
  • Thumbnail
    Defective Coloring on Classes of Perfect Graphs 
    Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2022) Article accepté pour publication ou publié
  • Thumbnail
    Token Sliding on Split Graphs 
    Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota; Sikora, Florian (2019) Communication / Conférence
  • Thumbnail
    Token Sliding on Split Graphs 
    Sikora, Florian; Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo