Abstract.

Efficient and accurate computation of \({\bf H}(\operatorname{curl})\) interface problems is of great importance in many electromagnetic applications. Unfitted mesh methods are especially attractive in three-dimensional (3D) computation as they can circumvent generating complex 3D interface-fitted meshes. However, many unfitted mesh methods rely on nonconforming approximation spaces, which may cause a loss of accuracy for solving Maxwell-type equations, and the widely used penalty techniques in the literature may not help in recovering the optimal convergence. In this article, we provide a remedy by developing Nédélec-type immersed finite element (IFE) spaces with a Petrov–Galerkin scheme that is able to produce optimal-convergent solutions. To establish a systematic framework, we analyze all the \(H^1\), \({\bf H}(\operatorname{curl})\), and \({\bf H}(\operatorname{div})\) IFE spaces and form a discrete de Rham complex. Based on these fundamental results, we further develop a fast solver using a modified Hiptmair–Xu preconditioner which works for both the generalized minimal residual (GMRES) and conjugate gradient (CG) methods for solving the nonsymmetric linear algebraic system. The approximation capabilities of the proposed IFE spaces will be also established.

Reproducibility of computational results.

This paper has been awarded the “SIAM Reproducibility Badge: code and data available”, as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available in https://github.com/lyc102/ifem OR in the Supplementary Materials.

Keywords

  1. interface problems
  2. Maxwell equations
  3. immersed finite element methods
  4. Petrov–Galerkin formulation
  5. de Rham complex
  6. Nédélec elements
  7. Raviart–Thomas elements
  8. preconditioner
  9. \({\bf H}(\text{curl;}\,\Omega )\)-elliptic equations

MSC codes

  1. 65N12
  2. 65N15
  3. 65N30
  4. 65N55

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgment.

We would like to thank the anonymous reviewers for their constructive comments and suggestions on improving this article.

Supplementary Materials

Index of Supplementary Materials
Title of paper: A Family of Immersed Finite Element Spaces and Applications to Three Dimensional H(curl) Interface Problems
Authors: Long Chen, Ruchi Guo, and Jun Zou
File: 120943_1_supp_515743_rq18d5_sc.pdf
Type: PDF
Contents: SM1: Proof of unisolvence for edge elements for a regular tetrahedron. SM2. Sobolev-type inequalities on interface elements. SM3. Proof of a norm equivalence involving jump conditions. SM4. Some figures for illustration of Assumptions A2 and A3.

References

1.
H. Ammari, J. Chen, Z. Chen, D. Volkov, and H. Wang, Detection and classification from electromagnetic induction data, J. Comput. Phys., 301 (2015), pp. 201–217.
2.
D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning in H(div) and applications, Math. Comp., 66 (1997), pp. 957–984.
3.
I. Babuška, G. Caloz, and J. E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31 (1994), pp. 945–981, https://doi.org/10.1137/0731051.
4.
A. T. Barker and T. Kolev, Matrix-free preconditioning for high-order H(curl) discretizations, Numer. Linear. Algebra Appl., 28 (2021), e2348.
5.
K.-J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Comput. & Structures, 79 (2001), pp. 243–252.
6.
R. Becker, E. Burman, and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3352–3360.
7.
L. Beirão da Veiga, F. Dassi, G. Manzini, and L. Mascotto, Virtual elements for Maxwell’s equations, Comput. Math. Appl., 116 (2022), pp. 82–99.
8.
L. Beirão da Veiga and L. Mascotto, Interpolation and stability properties of low-order face and edge virtual element spaces, IMA J. Numer. Anal., 43 (2023), pp. 828–851.
9.
F. Ben Belgacem, A. Buffa, and Y. Maday, The mortar finite element method for 3D Maxwell equations: First results, SIAM J. Numer. Anal., 39 (2001), pp. 880–901, https://doi.org/10.1137/S0036142999357968.
10.
M. Bonazzoli, V. Dolean, I. G. Graham, E. A. Spence, and P.-H. Tournier, Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption, Math. Comp., 88 (2019), pp. 2559–2604.
11.
M. Bonazzoli, V. Dolean, R. Pasquetti, and F. Rapetti, Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell’s equations, in Domain Decomposition Methods in Science and Engineering XXIII, C.-O. Lee, X.-C. Cai, D. E. Keyes, H. H. Kim, A. Klawonn, E.-J. Park, and O. B. Widlund, eds., Springer International Publishing, Cham, 2017, pp. 117–124.
12.
J. R. Brauer, J. J. Ruehl, M. A. Juds, M. J. V. Heiden, and A. A. Arkadan, Dynamic stress in magnetic actuator computed by coupled structural and electromagnetic finite elements, IEEE Trans. Magn., 32 (1996), pp. 1046–1049.
13.
S. C. Brenner, J. Cui, F. Li, and L.-Y. Sung, A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., 109 (2008), pp. 509–533.
14.
A. Buffa, M. Costabel, and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains, Numer. Math., 101 (2005), pp. 29–65.
15.
E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104 (2015), pp. 472–501.
16.
E. Burman, J. Guzmán, M. A. Sánchez, and M. Sarkis, Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems, IMA J. Numer. Anal., 38 (2018), pp. 646–668.
17.
Z. Cai and S. Cao, A recovery-based a posteriori error estimator for H(curl) interface problems, Comput. Methods Appl. Mech. Engrg., 296 (2015), pp. 169–195.
18.
Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994), pp. 1785–1799, https://doi.org/10.1137/0731091.
19.
S. Cao, L. Chen, and R. Guo, A virtual finite element method for two dimensional Maxwell interface problems with a background unfitted mesh, Math. Models Methods Appl. Sci., 31 (2021), pp. 2907–2936.
20.
S. Cao, L. Chen, and R. Guo, Immersed virtual element methods for electromagnetic interface problems in three dimensions, Math. Models Methods Appl. Sci., 33 (2023), pp. 455–503.
21.
R. Casagrande, R. Hiptmair, and J. Ostrowski, An a priori error estimate for interior penalty discretizations of the curl-curl operator on non-conforming meshes, J. Math. Ind., 6 (2016), 4.
22.
R. Casagrande, C. Winkelmann, R. Hiptmair, and J. Ostrowski, DG treatment of non-conforming interfaces in 3D Curl-Curl problems, in Scientific Computing in Electrical Engineering, Springer International Publishing, Cham, 2016, pp. 53–61.
23.
D. Chapelle and K. Bathe, The inf-sup test, Comput. & Structures, 47 (1993), pp. 537–545.
24.
J. Chen, Y. Liang, and J. Zou, Mathematical and numerical study of a three-dimensional inverse eddy current problem, SIAM J. Appl. Math., 80 (2020), pp. 1467–1492, https://doi.org/10.1137/19M1282866.
25.
L. Chen, \(i\)FEM: An Integrated Finite Element Methods Package in MATLAB, Technical report, University of California at Irvine, 2009.
26.
L. Chen, H. Wei, and M. Wen, An interface-fitted mesh generator and virtual element methods for elliptic interface problems, J. Comput. Phys., 334 (2017), pp. 327–348.
27.
Z. Chen, Q. Du, and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal., 37 (2000), pp. 1542–1570, https://doi.org/10.1137/S0036142998349977.
28.
Z. Chen, Y. Xiao, and L. Zhang, The adaptive immersed interface finite element method for elliptic and Maxwell interface problems, J. Comput. Phys., 228 (2009), pp. 5000–5019.
29.
C.-C. Chu, I. G. Graham, and T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp., 79 (2010), pp. 1915–1955.
30.
P. Ciarlet, Jr., and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell’s equations, Numer. Math., 82 (1999), pp. 193–219.
31.
M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., 151 (2000), pp. 221–276.
32.
M. Costabel, M. Dauge, and S. Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 627–649.
33.
M. Costabel, M. Dauge, and S. Nicaise, Corner singularities of Maxwell interface and eddy current problems, in Operator Theoretical Methods and Applications to Mathematical Physics, Birkhäuser Basel, Basel, 2004, pp. 241–256.
34.
F. de Prenter, C. V. Verhoosel, E. H. van Brummelen, J. A. Evans, C. Messe, J. Benzaken, and K. Maute, Multigrid solvers for immersed finite element methods and immersed isogeometric analysis, Comput. Mech., 65 (2020), pp. 807–838.
35.
E. M. Dede, J. Lee, and T. Nomura, Multiphysics Simulation: Electromechanical System Applications and Optimization, Springer, 2014.
36.
H. Edelsbrunner, Triangulations and meshes in computational geometry, Acta Numer., 9 (2000), pp. 133–213.
37.
S. Gross and A. Reusken, An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., 224 (2007), pp. 40–58.
38.
S. Gross and A. Reusken, Analysis of optimal preconditioners for CutFEM, Numer. Linear. Algebra Appl., (2022), e2486.
39.
R. Guo, Solving parabolic moving interface problems with dynamical immersed spaces on unfitted meshes: Fully discrete analysis, SIAM J. Numer. Anal., 59 (2021), pp. 797–828, https://doi.org/10.1137/20M133508X.
40.
R. Guo and T. Lin, An immersed finite element method for elliptic interface problems in three dimensions, J. Comput. Phys., 414 (2020), 109478.
41.
R. Guo, Y. Lin, and J. Zou, Solving two-dimensional \({\mathbf{H}}{\mathrm{(curl)}}\)-elliptic interface systems with optimal convergence on unfitted meshes, European J. Appl. Math., 34 (2023), pp. 774–805.
42.
R. Guo, Y. L. T. Lin, and Q. Zhuang, Error analysis of symmetric linear/bilinear partially penalized immersed finite element methods for Helmholtz interface problems, J. Comput. Appl. Math., 390 (2021), 113378.
43.
R. Guo and X. Zhang, Solving three-dimensional interface problems with immersed finite elements: A-priori error analysis, J. Comput. Phys., 441 (2021), 110445.
44.
J. Guzmán, M. A. Sánchez, and M. Sarkis, A finite element method for high-contrast interface problems with error estimates independent of contrast, J. Sci. Comput., 73 (2017), pp. 330–365.
45.
P. Hansbo, M. G. Larson, and S. Zahedi, A cut finite element method for a Stokes interface problem, Appl. Numer. Math., 85 (2014), pp. 90–114.
46.
R. Hiptmair, J. Li, and J. Zou, Convergence analysis of finite element methods for \({H}(\textrm{div};{\Omega })\)-elliptic interface problems, J. Numer. Math., 18 (2010), pp. 187–218.
47.
R. Hiptmair, J. Li, and J. Zou, Convergence analysis of finite element methods for H(curl; \(\Omega\))-elliptic interface problems, Numer. Math., 122 (2012), pp. 557–578.
48.
R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in \({\mathbf{H(curl)}}\) and H(div) spaces, SIAM J. Numer. Anal., 45 (2007), pp. 2483–2509, https://doi.org/10.1137/060660588.
49.
S. Hou, P. Song, L. Wang, and H. Zhao, A weak formulation for solving elliptic interface problems without body fitted grid, J. Comput. Phys., 249 (2013), pp. 80–95.
50.
T. Y. Hou, X.-H. Wu, and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation, Commun. Math. Sci., 2 (2004), pp. 185–205.
51.
P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math., 100 (2005), pp. 485–518.
52.
P. Houston, I. Perugia, and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator, SIAM J. Numer. Anal., 42 (2004), pp. 434–459, https://doi.org/10.1137/S003614290241790X.
53.
J. Hu and H. Wang, An optimal multigrid algorithm for the combining \(P_1\)-\(Q_1\) finite element approximations of interface problems based on local anisotropic fitting meshes, J. Sci. Comput., 88 (2021), 16.
54.
Q. Hu, S. Shu, and J. Zou, A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell’s equations, Math. Comp., 77 (2008), pp. 1333–1353.
55.
P. Huang, H. Wu, and Y. Xiao, An unfitted interface penalty finite element method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 323 (2017), pp. 439–460.
56.
H. Ji, An immersed Crouzeix-Raviart finite element method in 2D and 3D based on discrete level set functions, Numer. Math., 153 (2023), pp. 279–325.
57.
R. Kafafy, T. Lin, Y. Lin, and J. Wang, Three-dimensional immersed finite element methods for electric field simulation in composite materials, Internat. J. Numer. Methods Engrg., 64 (2005), pp. 940–972.
58.
J. Li, J. M. Melenk, B. Wohlmuth, and J. Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math., 60 (2010), pp. 19–37.
59.
R. Li, Q.-C. Liu, and F.-Y. Yang, A reconstructed discontinuous approximation on unfitted meshes to H(curl) and H(div) interface problems, Comput. Methods Appl. Mech. Engrg., 403 (2023), 115723.
60.
T. Lin, Y. Lin, and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53 (2015), pp. 1121–1144, https://doi.org/10.1137/130912700.
61.
H. Liu, L. Zhang, X. Zhang, and W. Zheng, Interface-penalty finite element methods for interface problems in \(H^1\), \({\boldsymbol{H}}{\mathbf{(curl)}}\), and \({\boldsymbol{H}}{\mathbf{(div)}}\), Comput. Methods Appl. Mech. Engrg., 367 (2020), 113137.
62.
T. Ludescher, S. Gross, and A. Reusken, A multigrid method for unfitted finite element discretizations of elliptic interface problems, SIAM J. Sci. Comput., 42 (2020), pp. A318–A342, https://doi.org/10.1137/18M1203353.
63.
G. Makinson and A. Shah, An iterative solution method for solving sparse nonsymmetric linear systems, J. Comput. Appl. Math., 15 (1986), pp. 339–352.
64.
P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003.
65.
J. C. Nedelec, Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35 (1980), pp. 315–341.
66.
J. C. Nédélec, A new family of mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 50 (1986), pp. 57–81.
67.
S. Osher and R. P. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys., 169 (2001), pp. 463–502.
68.
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes, eds., Springer-Verlag, Berlin, New York, 1977, pp. 292–315.
69.
K. Roppert, S. Schoder, F. Toth, and M. Kaltenbacher, Non-conforming Nitsche interfaces for edge elements in curl–curl-type problems, IEEE Trans. Magn., 56 (2020), 7400707.
70.
J. Schoberl and S. Zaglmayr, High order Nédélec elements with local complete sequence properties, COMPEL, 24 (2005), pp. 374–384.
71.
J. A. Sethian, Level Set Methods and Fast Marching Methods, 2nd ed., Cambridge Monogr. Appl. Comput. Math. 3, Cambridge University Press, Cambridge, 1999.
72.
J. Wang, S. Shu, and L. Zhong, Efficient parallel preconditioners for high-order finite element discretizations of \(H(grad)\) and \(H({\mathbf{curl}})\) problems, in Domain Decomposition Methods in Science and Engineering XIX, Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, eds., Springer, Heidelberg, 2011, pp. 325–332.
73.
S. Wang, F. Wang, and X. Xu, A robust multigrid method for one dimensional immersed finite element method, Numer. Methods Partial Differential Equations, 37 (2021), pp. 2244–2260.
74.
T. Warburton and J. S. Hesthaven, On the constants in \(hp\)-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 2765–2773.
75.
J. Xu and Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients, Math. Models Methods Appl. Sci., 18 (2008), pp. 77–105.
76.
J. Xu and J. Zou, Some nonoverlapping domain decomposition methods, SIAM Rev., 40 (1998), pp. 857–914, https://doi.org/10.1137/S0036144596306800.
77.
S. Zhao and G. W. Wei, High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces, J. Comput. Phys., 200 (2004), pp. 60–103.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3121 - A3149
ISSN (online): 1095-7197

History

Submitted: 27 June 2022
Accepted: 11 April 2023
Published online: 15 December 2023

Keywords

  1. interface problems
  2. Maxwell equations
  3. immersed finite element methods
  4. Petrov–Galerkin formulation
  5. de Rham complex
  6. Nédélec elements
  7. Raviart–Thomas elements
  8. preconditioner
  9. \({\bf H}(\text{curl;}\,\Omega )\)-elliptic equations

MSC codes

  1. 65N12
  2. 65N15
  3. 65N30
  4. 65N55

Reproducibility of computational results.

This paper has been awarded the “SIAM Reproducibility Badge: code and data available”, as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available in https://github.com/lyc102/ifem OR in the Supplementary Materials.

Authors

Affiliations

Department of Mathematics, University of California at Irvine, Irvine, CA 92697 USA.
Department of Mathematics, University of California at Irvine, Irvine, CA 92697 USA, The Chinese University of Hong Kong, Hong Kong.
Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.

Funding Information

HKSAR: 15302120
Hong Kong RGC General Research Fund: 14306921, 14306719
Funding: The work of the first author was funded by NSF DMS-2012465 and DMS-2309785. The second author was funded by NSF DMS-2309777. The work of the second author was supported in part by HKSAR grant 15302120. The work of the third author was substantially supported by Hong Kong RGC General Research Fund (projects 14306921 and 14306719).

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media