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Abstract

In this paper we will find a continuous of periodic orbits passing
near infinity for a class of polynomial vector fields in R

3. We consider
polynomial vector fields that are invariant under a symmetry with
respect to a plane Σ and that possess a “generalized heteroclinic loop”
formed by two singular points e+ and e− at infinity and their invariant
manifolds Γ and Λ. Γ is an invariant manifold of dimension 1 formed
by an orbit going from e− to e+, Γ is contained in R

3 and is transversal
to Σ. Λ is an invariant manifold of dimension 2 at infinity. In fact, Λ is
the 2–dimensional sphere at infinity in the Poincaré compactification
minus the singular points e+ and e−. The main tool for proving the
existence of such periodic orbits is the construction of a Poincaré map
along the generalized heteroclinic loop together with the symmetry
with respect to Σ.
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1 Introduction and statement of the

main results

For a class of polynomial vector fields in R
3 we will study the peri-

odic motion around a “generalized heteroclinic loop” formed by two
singular points at infinity and their invariant manifolds: an invariant
manifold of dimension 1 in R

3 and an invariant manifold of dimen-
sion 2 at infinity. Note that almost all papers studying the dynam-
ics near homoclinic and heteroclinic loops consider that the invariant
manifolds of these loops have the same dimension (usually 1), see for
instance [4, 5, 7, 8, 9]. Note that the Shil’nikov homoclinic loop is
really formed by a singular point and one orbit. Hence the study of
the dynamic near a heteroclinic loop formed by invariant manifolds of
distinct dimension is an interesting, and relatively new problem.

In order to study the behaviour of a polynomial vector field near
infinity we will use the Poincaré compactification. This technique
allows to extend the vector field in R

3 to a unique analytic vector field
on the Poincaré ball D

3 = {x ∈ R
3 : ||x|| 6 1}, whose boundary,

the sphere S
2, plays the role of the infinity for the initial polynomial

vector field. For more details on the Poincaré compactification see
Appendix 1.

Let P , Q and R be polynomials in the variables x, y and z of even
degree. We consider the polynomial vector fields X = (P,Q,R) in R

3

satisfying the following conditions.

(C1) The flow of X is invariant under the symmetry (x, y, z, t) −→
(−x, y, z,−t). So the phase portrait of X is symmetric with re-
spect to the plane x = 0.

(C2) The straight line y = z = 0 (i.e. the x–axis) is invariant by the
flow of X, it does not contain any singular point and the flow on
it goes in the increasing direction of the x–axis.

(C3) The straight line y = z = 0 intersects the boundary of the
Poincaré ball in two hyperbolic singular points, the point e+ =
(0, 0, 0) of the local chart U1 and the point e− = (0, 0, 0) of the
local chart V1, respectively. Here we are using the notation of
the Poincaré compactification. Moreover the point e+ is either
an unstable focus or an unstable node on the boundary S

2 of the
Poincaré ball. Recall that a singular point is hyperbolic if the
real part of all its eigenvalues is different from zero.
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(C4) The boundary of the Poincaré ball does not contain singular
points of X different from e+ and e−, and it does not contain
any periodic orbit.

The flow on the boundary S
2 of the Poincaré ball always is sym-

metric with respect to the origin of R3. This symmetry reverses the
orientation of the orbits because the degree of X is even. Due to this
symmetry on S

2, if the point e+ is an unstable focus (node, respec-
tively) on S

2, then the point e− is a stable focus (node, respectively)
on S

2.
We note that conditions (C2)–(C4) say that the Poincaré com-

pactification of X, p(X), possesses a generalized heteroclinic loop L
which is formed by the two singular points at infinity e+ and e−, the
orbit Γ = {(x, y, z) ∈ D

3 : y = z = 0} and Λ = S
2 \ {e+, e−}.

Since on S
2 the singular point e+ is unstable (see condition (C3)) and

consequently e− is stable, condition (C4) together with the Poincaré–
Bendixon Theorem on S

2 [6] assure that every orbit on Λ starts at e+

and ends at e−. In fact, Λ is the 2–dimensional unstable manifold of
e+ (i.e. W u

e+) which coincides with the 2–dimensional stable manifold
of e− (i.e. W s

e−). Moreover, Γ is formed by a unique orbit starting at
e− and ending at e+; i.e. Γ is the 1–dimensional stable manifold of e+

(i.e. W s
e+) which coincides with the 1–dimensional unstable manifold

of e− (i.e. W u
e−). From condition (C1), the flow on the Poincaré ball

D
3 is symmetric with respect to the plane x = 0. With this dynamics

and symmetry we can prove the existence of a continuous of symmet-
ric periodic orbits of X near the generalized heteroclinic loop L. Our
main results are the following two theorems.

Theorem 1 Let X be a polynomial vector field in R
3 of even degree

satisfying conditions (C1)–(C4). For ε > 0, let Dε denote the punc-
tured disc {(x, y, z) : x = 0, 0 < y2 + z2 < ε2}. Then there exists ε
sufficiently small such that all the solutions of X having initial con-
ditions (x(0), y(0), z(0)) = (0, y0, z0) ∈ Dε are periodic solutions near
the generalyzed heteroclinic loop L.

The proof of Theorem 1 is given in Section 2.
The class C of polynomial vector fields satisfying conditions (C1)–

(C4) is not empty. In this paper we characterize the polynomial vector
fields of the class C having degree 2. In the statement of the next the-
orem the sets of conditions form (i) to (xi) are given in Subsection 3.3.
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Theorem 2 Let X be the polynomial vector field

(a0+a1 y+a2 z+a3 x
2+a4 y

2+a5 y z+a6 z
2, b1 x y+b2 x z, c1 x y+c2 x z).

(a) Suppose that e+ and e− are foci and that a6 < 0. Then X
satisfies conditions (C1)–(C4) if and only if either (i) or (ii)
holds.

(b) Assume that e+ and e− are nodes. Then X satisfies conditions
(C1)–(C4) if and only if either (iii), or (iv), ... , or (xi) holds.

(c) There are vector fields X satisfying the sets of conditions either
(i) or (ii) of statement (a) with a6 < 0, and satisfying the sets
of conditions either (iii), or (iv), ... , or (xi) of statement (b).

In Section 3 we prove Theorem 2.
We note that for polynomial vector fields that are invariant under

symmetry (C1) its periodic orbits in a neighborhood of a heteroclinic
loop formed by the same orbit Γ, the points e+ and e− but being
saddles instead of foci when we restrict them at S

2, and an orbit at
infinity connecting e+ and e−, have been studied in [2]. Note that this
heteroclinic loop has only invariant manifolds of dimension 1.

We can consider a polynomial vector field satisfying conditions
(C2)–(C4) and being invariant under a symmetry with respect to the
straight line x = z = 0 instead of being invariant by a symmetry
with respect to the plane x = 0 (condition (C1)). In this case, in
order to assure the existence of symmetric periodic orbits using similar
techniques than the ones used in this paper, we would need that e+ be
a focus on S

2. If we could find a polynomial vector field satisfying those
conditions, we could prove the existence of a discrete set of infinitely
many symmetric periodic orbits near the generalized heteroclinic loop
L. Unfortunately there are no polynomial vector fields of even degree
satisfying those conditions (see Appendix 2). Nevertheless in [3] you
can find an example of a non–polynomial vector field exhibiting this
dynamics.

2 Proof of Theorem 1

Recall that Γ = {(x, y, z) ∈ D
3 : y = z = 0} and Λ = S

2 \ {e+, e−}
where S

2 denotes the boundary of the Poincaré ball D3.
From condition (C1), the vector field X is invariant under symme-

try (x, y, z, t) −→ (−x, y, z,−t), this means that if φ(t) = (x(t), y(t), z(t))
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Figure 1: The map π.

is an orbit of X, then ψ(t) = (−x(−t), y(−t), z(−t)) is also an orbit.
This symmetry can be used in order to obtain symmetric periodic
orbits in the following way. Using the symmetry and the uniqueness
theorem on the solutions of the differential system associated to X it
is easy to see that if x(0) = 0, then the orbits φ(t) and ψ(t) must be
the same. Moreover, if there exists a time τ > 0 such that x(τ) = 0
and x(τ) 6= 0 for all 0 < t < τ , then the orbit is periodic with pe-
riod 2τ . In other words, if an orbit intersects the plane of symmetry
Σ = {(x, y, z) ∈ R

3 : x = 0} in two different points, then it is a
symmetric periodic orbit.

We start giving some definitions and notations. Assume that
ε1, ε2 > 0 are sufficiently small. We consider a small topological cylin-
der in a neighbourhood of the equilibrium point e+, with base on Λ
and boundaries Σ1 and Σ2, see Figure 1. The expression of Σ1 and Σ2

on the local chart U1 are given by Σ1 = {(z1, z2, z3) ∈ Int(D3) : z3 =
ε1, z

2
1 + z22 6 ε2} and Σ2 = {(z1, z2, z3) ∈ Int(D3) : z3 6 ε1, z

2
1 + z22 =

ε2}, respectively.
We define a map π : Σ −→ Σ in the following way. We denote by

ϕ(t, q) the flow generated by X, satisfying ϕ(0, q) = q. We consider
the diffeomorphism π0 : Σ → Σ1 defined by π0(q) = p, where p is
the point at which the orbit ϕ(t, q) intersects the cross section Σ1 for
the first time. By the continuity of the flow ϕ with respect to initial
conditions, if q is sufficiently close to the origin, then the orbit ϕ(t, q)
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is close to the orbit Γ for all t in a finite interval of time. Since the
orbit Γ expends a finite time for going from the origin to q1 = Γ∩Σ1,
we can guarantee that for q sufficiently close to the origin the orbit
ϕ(t, q) intersects Σ1. Consequently π0 is well defined in a sufficiently
small neighbourhood of the origin O in Σ.

We consider a second diffeomorphism π1 : Σ1 −→ Σ2 defined by
π1(q) = p, where p is the point at which the orbit ϕ(t, q) intersects Σ2

for the first time. If ε2 is sufficiently small, then the orbit ϕ(t, q) inter-
sects Σ2 for all q ∈ Σ1 \ {q1}, because e+ is a hyperbolic equilibrium
point with W u

e+ = Λ and W s
e+ = Γ.

We define a third map π2 : Σ2 −→ Σ, defined by π2(q) = p, where
p is the point at which the orbit ϕ(t, q) intersects Σ for the first time.
Since e+ is the α–limit of all the orbits of X on Λ, if ε1 and ε2 are
sufficiently small then the point p is well defined.

Finally, we consider the map π : Σ −→ Σ defined by π = π2◦π1◦π0.
Clearly, if ε > 0 is sufficiently small, then the map π is well defined on
all Dε. Since π(Dε) ⊂ Σ, all the orbits of X passing through points
of Dε intersect the plane of symmetry Σ at two different points one
near the origin and the other one near Λ. Therefore all the points of
Dε correspond to initial conditions of symmetric periodic orbits of X,
which proves Theorem 1.

3 Proof of Theorem 2

We consider an arbitrary polynomial vector field X = (P,Q,R) of
degree n = 2 in R

3 with

P =
∑

06i+j+k6n

aijk x
iyjzk ,

Q =
∑

06i+j+k6n

bijk x
iyjzk , (1)

R =
∑

06i+j+k6n

cijk x
iyjzk .

Now we analyze the conditions on the coefficients that we obtain after
imposing conditions (C1)–(C4) to the vector field X.
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3.1 Conditions (C1)–(C2)

Assuming that the straight line y = z = 0 is invariant under the flow
of X we have that

b000 = b100 = b200 = c000 = c100 = c200 = 0 .

Imposing that the system associated to X is invariant under the sym-
metry (C1) we get that

a100 = a110 = a101 = b010 = b020 = b001 = b011 = b002 = c010 =
c020 = c001 = c011 = c002 = 0 .

After imposing these conditions, the system associated to the quadratic
vector field X becomes

ẋ = a0 + a1 y + a2 z + a3 x
2 + a4 y

2 + a5 y z + a6 z
2,

ẏ = b1 x y + b2 x z, (2)

ż = c1 x y + c2 x z.

We want that the straight line y = z = 0 does not contain any singular
point and the flow on it goes in the increasing direction of the x–axis.
The flow on this straight line is given by ẋ = a0 + a3 x

2, then the
coefficients a0 and a3 must satisfy that a0 > 0 and a3 > 0.

3.2 Conditions (C3)–(C4)

Now we analyze system (2) at infinity. The expression of system p(X)
(the Poincaré compactification of X) in the local chart U1 is

ż1 = (b1 − a3) z1 + b2 z2 − a4 z1
3 − a5 z1

2 z2 − a6 z1 z2
2−

a1 z1
2 z3 − a2 z1 z2 z3 − a0 z1 z3

2 ,
ż2 = c1 z1 + (c2 − a3) z2 − a4 z1

2 z2 − a5 z1 z2
2 − a6 z2

3−
a1 z1 z2 z3 − a2 z2

2 z3 − a0 z2 z3
2 ,

ż3 = −a3 z3 − a4 z1
2 z3 − a5 z1 z2 z3 − a6 z2

2 z3 − a1 z1 z3
2−

a2 z2 z3
2 − a0 z3

3 .

(3)

Clearly the origin e+ of the chart U1 is a singular point. The linear
part of (3) at the origin has the matrix

M =




b1 − a3 b2 0
c1 c2 − a3 0
0 0 −a3


 .
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Let β = b1 + c2 − 2 a3 and let ∆ = 4 b2 c1 + (b1 − c2)
2. Then the

eigenvalues of M are

µ1 = −a3 , µ2,3 =
1

2

(
β ±

√
∆
)
.

We assume that a0 > 0 and a3 > 0 (these are the conditions on
the coefficients obtained in Section 3.1). First we impose condition
(C3); that is, we impose that e+ is a hyperbolic singular point which
restricted to the boundary S

2 of the Poincaré ball is either an unstable
focus or node. Hence a3 > 0. Since S

2 is invariant under the flow of
p(X), if ∆ < 0 and β > 0, then e+ is a hyperbolic singular point which
is an unstable focus on S

2; whereas if ∆ > 0 and µ2,3 > 0, then e+ is
a hyperbolic singular point which is an unstable node on S

2.
Here we characterize the sign of ∆. Let α1 = −(b1− c2)2/(4 c1). It

is easy to see that if c1 > 0, then ∆ < 0 if b2 < α1; ∆ = 0 if b2 = α1;
and ∆ > 0 if b2 > α1. If c1 < 0, then ∆ < 0 if b2 > α1; ∆ = 0 if
b2 = α1 and ∆ > 0 if b2 < α1. Finally, if c1 = 0, then ∆ = 0 when
b1 = c2; and ∆ > 0 when b1 6= c2.

Now we study the sign of the real part of the eigenvalues µ2,3. We
need that Re(µ2,3) > 0, so β > 0. Let α2 = (a3 − b1)(a3 − c2)/c1.
Assuming that β > 0, µ3 = 0 if and only if b2 = α2 and µ2 is always
positive. We can see that α2 > α1 for all β 6= 0 and c1 > 0; α2 < α1

for all β 6= 0 and c1 < 0; and α1 = α2 only when β = 0. Moreover,
if c1 = 0, then µ2,3 > 0 if and only if b1 > a3 and c2 > a3. In short,
analyzing the sign of ∆ and of Re(µ2,3) > 0, we have that e+ is a
hyperbolic singular point which is either an unstable focus or node at
infinity if and only if the coefficients must satisfy one of the following
conditions

(p.1) a0, a3 > 0, c1 > 0, ∆ < 0, β > 0 and b2 < α1;

(p.2) a0, a3 > 0, c1 < 0, ∆ < 0, β > 0 and b2 > α1;

(p.3) a0, a3 > 0, c1 > 0, ∆ > 0, β > 0 and b2 ∈ [α1, α2);

(p.4) a0, a3 > 0, c1 < 0, ∆ > 0, β > 0 and b2 ∈ (α2, α1];

(p.5) a0, a3 > 0, c1 = 0, b1 > a3 and c2 > a3.

From condition (C4) the vector field p(X) cannot have singular
points on Λ. Therefore we impose that p(X) has no singular points
neither on the local chart U2, nor on the straight line z2 = z3 = 0 in
the local chart U3.
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The expression of p(X) in the local chart U2 is given by

ż1 = a4 + a5 z2 + a1 z3 + (a3 − b1) z1
2 − b2 z1

2 z2 + a6 z2
2+

a2 z2 z3 + a0 z3
2 ,

ż2 = c1 z1 + (c2 − b1) z1 z2 − b2 z1 z2
2 ,

ż3 = −b1 z1 z3 − b2 z1 z2 z3 ;

and the expression of p(X) in the local chart U3 is given by

ż1 = a6 + a5 z2 + a2 z3 + (a3 − c2) z1
2 − c1 z1

2 z2 + a4 z2
2+

a1 z2 z3 + a0 z3
2 ,

ż2 = b2 z1 + (b1 − c2) z1 z2 − c1 z1 z2
2 ,

ż3 = −c2 z1 z3 − c1 z1 z2 z3 .

The singular points of p(X) at infinity in the local chart U2 are given
by the solutions of system

a4 + a5 z2 + (a3 − b1) z1
2 − b2 z1

2 z2 + a6 z2
2 = 0 ,

z1
(
c1 + (c2 − b1) z2 − b2 z2

2
)

= 0 .
(4)

From the last equation of (4) we have that either z1 = 0, or

c1 + (c2 − b1) z2 − b2 z2
2 = 0 . (5)

If z1 = 0, then the first equation of (4) becomes

a4 + a5 z2 + a6 z
2
2 = 0, (6)

so if we want that system (4) has no real solutions, then we need that
one of the following two conditions be satisfied

(q.1) ∆1 = a25 − 4 a4 a6 < 0;

(q.2) a5 = a6 = 0 and a4 6= 0.

Notice that if a6 = a5 = a4 = 0, then z1 = 0 restricted to S
2 is a

straight line of singular points.

The solutions of equation (5) are z2 = ζ± =
(
c2 − b1 ±

√
∆
)
/(2 b2)

when b2 6= 0; z2 = ζ = c1/(b1 − c2) when b2 = 0 and b1 6= c2; and
finally (5) has no real solutions when

(r.1) b2 = 0 and b1 = c2.

First we consider the case b2 6= 0. Notice that if
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(r.2) ∆ < 0, b2 6= 0,

then (5) has no real solutions, therefore (4) has no real solutions.
Now we analyze the case ∆ > 0. Let ξ1 = a6 b1

2 − a5 b1 b2 +2 a4 b2
2 +

2 a6 b2 c1 − 2 a6 b1 c2 + a5 b2 c2 + a6 c2
2, ξ2 = a6 b1 − a5 b2 − a6 c2, η1 =

ξ1−ξ2
√
∆ and η2 = ξ1+ξ2

√
∆. The first equation of (4) is equivalent

to equation 2µ2 b
2
2 z

2
1−η1 = 0 when z2 = ζ+, and to 2µ3 b

2
2 z

2
1−η2 = 0

when z2 = ζ−. Since µ2,3 > 0, the first equation of (4) has no real
solutions when

(r.3) ∆ > 0, b2 6= 0, η1 < 0 and η2 < 0.

Now we analyze the case b2 = 0 and b1 6= c2. Notice that when
b2 = 0 the eigenvalues of M are µ2 = b1 − a3 and µ3 = c2 − a3 when
b1 > c2, and µ2 = c2 − a3 and µ3 = b1 − a3 when b1 < c2. Let η3 =
a4 b1

2+a5 b1 c1+a6 c1
2−2 a4 b1 c2−a5 c1 c2+a4 c22. If z2 = ζ, then the

first equation of (4) is equivalent to equation µ2 (b1 − c2)
2 z21 − η3 = 0

when b1 > c2, and to µ3 (b1 − c2)
2 z21 − η3 = 0 when b1 < c2. Since

µ2,3 > 0, then the first equation of system (4) has no real solutions
when

(r.4) b2 = 0, b1 6= c2 and η3 < 0.

The singular points of p(X) on the straight line z2 = z3 = 0 in the
local chart U3 are given by the solutions of system

a6 + (a3 − c2) z
2
1 = 0 ,

b2 z1 = 0 .
(7)

Since Re(µ2,3) > 0 we have that if b2 = 0, then a3−c2 < 0. Therefore,
analyzing the cases for which (7) has no real solutions we obtain that
the coefficients must satisfy one of the conditions

(s.1) b2 6= 0 and a6 6= 0;

(s.2) b2 = 0, a6 < 0.

Notice that conditions (s.∗) are incompatible with condition (q.2). So
from now on condition (q.1) always holds.

We have just seen which conditions must verify the coefficients of
X in order that p(X) has no singular points on Λ. Now we impose
that p(X) has no periodic orbits on Λ.

Assume that ∆ > 0. Then it is easy to see that the vector field
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p(X) in the local chart U1 possesses one or two (it depends on the
values of the coefficients) invariant straight lines passing through the
origin, they are given by

2b2z2 − (c2 − b1 ±
√
∆)z1 = 0 when ∆ > 0 and b2 6= 0 ,

2b2z2 − (c2 − b1)z1 = 0 when ∆ = 0 and b2 6= 0 ,
(b1 − c2)z2 − c1z1 = 0 and z1 = 0 when ∆ > 0 and b2 = 0 ,
z1 = 0 when ∆ = 0 and b2 = 0 .

Each invariant straight line gives an invariant maximal circle under
the flow of p(X) on S

2 that passes through the singular points e+ and
e−. Since any periodic orbit on S

2 must surround the singular point
e+ (or equivalently e−), then the existence of such invariant maximal
circles guarantees that p(X) has no periodic orbits on Λ.

Now we study the case ∆ < 0. Let q(X) be the vector field p(X)
restricted to S

2. If the divergence div(q(X)) on the local chart U1 is
either no–negative or no–positive for all z1, z2 ∈ R, then we can assure
that q(X) has no periodic orbits strictly contained on the local chart
U1.

The divergence div(q(X)) on the local chart U1 is

div(q(X)) = β − 4 a4 z
2
1 − 4 a5 z1 z2 − 4 a6 z

2
2 . (8)

Solving equation div(q(X)) = 0 with respect to the variable z2 we
obtain z2 = (a5 z1±

√
∆2)/(2 a6), where ∆2 = β a6+∆1 z

2
1 . Condition

(q.1) says that ∆1 < 0 and consequently a6 6= 0. Moreover β > 0.
Therefore if a6 < 0, then ∆2 < 0 for all z1. In short, if

(t.1) ∆ < 0, (q.1) and a6 < 0 ,

then expression (8) is different from zero for all z1, z2. Notice that
condition (t.1) implies that a4 < 0.

There could be periodic orbits of q(X) that are not strictly con-
tained on the local chart U1. In order to prove that such periodic
orbits do not exist, we will see that the flow of q(X) on the maxi-
mal circle that separates de local charts U1 and V1 is transversal and
it goes from U1 to V1. It is sufficient to prove that the flow on the
z2 axis of the local chart U2 is transversal, i.e. ż1 is negative for all
(0, z2, 0); and that the flow on the origin of the local chart U3 satisfies
that ż1 is negative.

On the z2 axis of the local chart U2 we have that

ż1|(z1=0, z3=0) = a6 z
2
2 + a5 z2 + a4 .
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Note that ż1|(z1=0, z3=0) = 0 if and only if z2 = (−a5 ±
√
∆1)/(2 a6).

Therefore from condition (t.1), ż1|z1=0, z3=0 < 0 for all z2.
On the origin of the local chart U3 we have that

ż1|(z1=0, z2=0, z3=0) = a6 .

From condition (t.1) again, ż1|(z1=0, z2=0, z3=0) < 0.
In short if ∆ < 0 and condition (t.1) is satisfied, then there are

no periodic orbits on Λ strictly contained in the local chart U1 (con-
sequently there are no periodic orbits strictly contained in the local
chart V1) and there are no periodic orbits passing through the maxi-
mal circle that separates de local charts U1 and V1, because the flow
on it is transversal and goes from U1 to V1. Therefore there are no
periodic orbits of p(X) on Λ.

In short, when ∆ > 0, conditions (C1)–(C4) are satisfied if and
only if the coefficients of X satisfy one of the conditions (p.∗), the
condition (q.1), one of the conditions (r.∗) and one of the conditions
(s.∗). When ∆ > 0, if the coefficients of X satisfy one of the conditions
(p.∗), one of the conditions (r.∗), one of the conditions (s.∗), and the
condition (t.1), then conditions (C1)–(C4) are satisfied.

3.3 Summary

Analyzing all the possible combinations of the conditions on the coef-
ficients of X obtained in the previous section we have that when the
singular point e+ is an unstable focus on S

2 and a6 < 0, conditions
(C1)–(C4) are satisfied if and only if one of the following two condi-
tions is satisfied. Notice that if b2 = 0 then ∆ > 0 when b1 6= c2, and
∆ = 0 when b1 = c2.

(i) a0, a3 > 0, ∆ < 0, c1 > 0, β > 0, b2 < α1, b2 6= 0, ∆1 < 0;

(ii) a0, a3 > 0, ∆ < 0, c1 < 0, β > 0, b2 > α1, b2 6= 0, ∆1 < 0.

The necessary and sufficient conditions in order that conditions
(C1)–(C4) be satisfied when the singular point e+ is an unstable node
on S

2 are the following.

(iii) a0, a3 > 0, ∆ > 0, c1 > 0, β > 0, b2 ∈ [α1, α2), ∆1 < 0, b2 6= 0,
η1 < 0, η2 < 0, a6 6= 0;

(iv) a0, a3 > 0, ∆ > 0, c1 > 0, β > 0, b2 = 0 ∈ [α1, α2), ∆1 < 0,
b1 6= c2, η3 < 0, a6 < 0;
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(v) a0, a3 > 0, ∆ > 0, c1 > 0, β > 0, b2 = 0 ∈ [α1, α2), ∆1 < 0,
b1 = c2, a6 < 0;

(vi) a0, a3 > 0, ∆ > 0, c1 < 0, β > 0, b2 ∈ (α2, α1], ∆1 < 0, b2 6= 0,
η1 < 0, η2 < 0, a6 6= 0;

(vii) a0, a3 > 0, ∆ > 0, c1 < 0, β > 0, b2 = 0 ∈ (α2, α1], ∆1 < 0,
b1 6= c2, η3 < 0, a6 < 0;

(viii) a0, a3 > 0, ∆ > 0, c1 < 0, β > 0, b2 = 0 ∈ (α2, α1], ∆1 < 0,
b1 = c2, a6 < 0;

(ix) a0, a3 > 0, c1 = 0, b1 > a3, c2 > a3, ∆1 < 0, b2 6= 0, η1 < 0,
η2 < 0;

(x) a0, a3 > 0, c1 = 0, b1 > a3, c2 > a3, ∆1 < 0, b2 = 0, b1 6= c2,
η3 < 0, a6 < 0;

(xi) a0, a3 > 0, c1 = 0, b1 = c2 > a3, ∆1 < 0, b2 = 0, a6 < 0.

Next we give examples of coefficients satisfying each one of these
11 condition sets.

(i) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 4, b2 = −4, c1 = 2, c2 = −1;

(ii) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 4, b2 = 4, c1 = −2, c2 = −1;

(iii) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 6, b2 = −6, c1 = 2, c2 = −1;

(iv) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 3, b2 = 0, c1 = 2, c2 = 2;

(v) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 2, b2 = 0, c1 = 2, c2 = 2;

(vi) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 6, b2 = 6, c1 = −2, c2 = −1;

(vii) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 3, b2 = 0, c1 = −2, c2 = 2;

(viii) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 2, b2 = 0, c1 = −2, c2 = 2;

(ix) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 3, b2 = 1, c1 = 0, c2 = 2;
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(x) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 3, b2 = 0, c1 = 0, c2 = 2;

(xi) a0 = 2, a1 = −1, a2 = 2, a3 = 1, a4 = −1, a5 = 1, a6 =
−2, b1 = 2, b2 = 0, c1 = 0, c2 = 2.

Appendix 1

A polynomial vector field X in R
n can be extended to a unique ana-

lytic vector field on the sphere S
n. The technique for making such an

extension is called the Poincaré compactification. The Poincaré com-
pactification allows us to study the vector field in a neighbourhood
of infinity which is represented by the equator Sn−1 of the sphere S

n.
Poincaré introduced this technique for polynomial vector fields in R

2,
its extension to R

n can be found in [1]. Here we only consider the
Poincaré compactification for polynomial vector fields in R

3.
Let X = (P 1, P 2, P 3) be a polynomial vector field in R

3, let
x = (x1, x2, x3) and let m = max{deg(P 1),deg(P 2),deg(P 3)} be the
degree of X.

We consider the unit sphere in R
4, S3 = {y = (y1, y2, y3, y4) ∈ R

4 :
||y|| = 1}, which is called the Poincaré sphere; and we consider the
hyperplane Π = {(x1, x2, x3, x4) ∈ R

4 : x4 = 1} which is the tangent
to S

3 at the northern pole (0, 0, 0, 1). We note that Π is diffeomorphic
to R

3, then we identify R
3 with Π. Let H+ = {y ∈ S

3 : y4 > 0} and
H− = {y ∈ S

3 : y4 < 0} be the northern and southern hemispheres
of S3, respectively.

We consider the central projections f+ : Π = R
3 −→ H+ and f− :

Π = R
3 −→ H−, defined by f+(x) = (x1, x2, x3, 1)/∆(x) and f−(x) =

−(x1, x2, x3, 1)/∆(x) respectively, where ∆(x) = (1 +
∑3

i=1 x
2
i )

1/2.
Through these central projections, R3 can be identified with the north-
ern and southern hemispheres of S3 respectively. So the vector field X
induces a vector field X̃ in H+ ∪H− defined by X̃(y) = (Df+)xX(x)
when y = f+(x), and by X̃(y) = (Df−)xX(x) when y = f−(x).

We note that X̃(y) gives two copies of X one on the northern
hemisphere H+ and the other one on the southern hemisphere H−.
Moreover X̃(y) is defined inH+∪H−, but in general it is not defined on
the equator S2 = {y ∈ S

3 : y4 = 0} of S3. We can extend analytically
the vector field X̃(y) to the whole sphere S

3 in the following way

p(X)(y) = ym−1
4 X̃(y).
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The vector field p(X) is called the Poincaré compatification of X.
The closed northern hemisphere is a closed ball of R3, called the

Poincaré ball D3, its interior is diffeomorphic to R
3 and its boundary

S
2 correspond to the infinity of R3. We note that the boundary of the

Poincaré ball is invariant by the flow of p(X). So p(X) allows us to
study the behaviour of X in a neighbourhood of infinity.

To compute the analytical expression for p(X) we shall consider
S
3 as a differentiable manifold and we choose the eight coordinate

neighbourhoods Ui = {y ∈ S3 : yi > 0} and Vi = {y ∈ S3 : yi < 0}, for
i = 1, . . . , 4, with the corresponding coordinate maps Fi : Ui −→ R

3

and Gi : Vi −→ R
3 defined by

Fi(y) = Gi(y) =
1

yi
yi = (z1, z2, z3) ,

where yi is the point (y1, y2, y3, y4) without the component yi.
We do the computations of p(X) on the local chart U1. The coordi-

nate map on U1 is given by F1(y) = (y2/y1, y3/y1, y4/y1) = (z1, z2, z3).
We note that the map F1 is the inverse of the central projection from
the origin to the tangent space of S3 at the point (1, 0, 0, 0). The ex-
pression of p(X) in this local chart U1 is given by (DF1)y(p(X)(y)),
which after doing the computations becomes

zm3
(∆z)m−1

(
−z1P 1 + P 2,−z2P 1 + P 3,−z3P 1

)
,

where P i = P i(1/z3, z1/z3, z2/z3) and ∆z = (1 +
∑3

i=1 z
2
i )

1/2.
In a similar way we can deduce the expressions for p(X) in the

local charts U2 and U3. These are

zm3
(∆z)m−1

(
−z1P 2 + P 1,−z2P 2 + P 3,−z3P 2

)
,

where P i = P i(z1/z3, 1/z3, z2/z3), and

zm3
(∆z)m−1

(
−z1P 3 + P 1,−z2P 3 + P 2,−z3P 3

)
,

where P i = P i(z1/z3, z2/z3, 1/z3), respectively.
The expression for p(X) in the local chart U4 is (∆z)

1−m(P 1, P 2, P 3)
where P i = P i(z1, z2, z3). Finally, the expression for p(X) in the local
charts Vi is the same as in Ui multiplied by (−1)m−1.

We note that with a convenient change of the time we shall omit
the factor 1/(∆z)m−1 in the expressions of p(X).
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Appendix 2

We consider the polynomial vector field X = (P,Q,R) of even degree
n given by (1). The system associated to the vector field X in the
local chart U1 is given by

ż1 = −
∑

06i+j+k6n

aijk z
j+1
1 zk2 z

n−i−j−k
3 +

∑

06i+j+k6n

bijk z
j
1 z

k
2 z

n−i−j−k
3 ,

ż2 = −
∑

06i+j+k6n

aijk z
j
1 z

k+1
2 zn−i−j−k

3 +
∑

06i+j+k6n

cijk z
j
1 z

k
2 z

n−i−j−k
3 ,

ż3 = −
∑

06i+j+k6n

aijk z
j
1 z

k
2 z

n−i−j−k+1
3 .

The lineal part of this system at the origin has the matrix

M =




bn−1,1,0 − an00 bn−1,0,1 bn−1,0,0

cn−1,1,0 cn−1,0,1 − an00 cn−1,0,0

0 0 −an00


 .

Assuming that the straight line y = z = 0 is invariant by the
flow of X we have that bi00 = ci00 = 0 for all i ∈ {0, 1, . . . , n}. Im-
posing that the system associated to X is invariant under the sym-
metry (x, y, z, t) −→ (−x, y,−z, t), we get that aijk = cijk = 0 for
all i, k ∈ {0, 1, . . . , n} such that i + k is odd, and bijk = 0 for all
i, k ∈ {0, 1, . . . , n} such that i+ k is even.

In this case bn−1,0,1 = bn−1,0,0 = cn−1,1,0 = cn−1,0,0 = 0, so the
eigenvalues of M are given by

µ1 = −an00, µ2 = bn−1,1,0 − an00, µ3 = cn−1,0,1 − an00.

Notice that all the eigenvalues of M are real. Therefore in this
case e+ cannot be a focus on S

2.
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