Computer Science > Data Structures and Algorithms
[Submitted on 5 Feb 2005]
Title:On Dynamic Range Reporting in One Dimension
View PDFAbstract: We consider the problem of maintaining a dynamic set of integers and answering queries of the form: report a point (equivalently, all points) in a given interval. Range searching is a natural and fundamental variant of integer search, and can be solved using predecessor search. However, for a RAM with w-bit words, we show how to perform updates in O(lg w) time and answer queries in O(lglg w) time. The update time is identical to the van Emde Boas structure, but the query time is exponentially faster. Existing lower bounds show that achieving our query time for predecessor search requires doubly-exponentially slower updates. We present some arguments supporting the conjecture that our solution is optimal.
Our solution is based on a new and interesting recursion idea which is "more extreme" that the van Emde Boas recursion. Whereas van Emde Boas uses a simple recursion (repeated halving) on each path in a trie, we use a nontrivial, van Emde Boas-like recursion on every such path. Despite this, our algorithm is quite clean when seen from the right angle. To achieve linear space for our data structure, we solve a problem which is of independent interest. We develop the first scheme for dynamic perfect hashing requiring sublinear space. This gives a dynamic Bloomier filter (an approximate storage scheme for sparse vectors) which uses low space. We strengthen previous lower bounds to show that these results are optimal.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.