
Implementation of Asynchronous Predictive Fetch to
Improve the Performance of Ajax-Enabled

Web Applications

Andi Ahmad Dahlan
College of Information Science and Engineering

Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu City,

Shiga Prefecture, Japan 525-8577
+81-77-561-4971

aadfuty@gin.ics.ritsumei.ac.jp

Toshikazu Nishimura
College of Information Science and Engineering

Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu City,

Shiga Prefecture, Japan 525-8577
+81-77-561-4971

tnt@is.ritsumei.ac.jp

ABSTRACT
An implementation study of Asynchronous Predictive Fetch
method to improve the performance of Ajax-enabled Web
applications is presented. To evaluate the performance of the
approach, two versions of Ajax-enabled Web applications that
implemented the same user interface were developed. A number
of trials were accomplished to collect performance data on each
application when doing the same tasks. We found that the
method provided a performance improvement of the average
response time of 64.5%.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – web-based interaction, asynchronous
interaction.

General Terms
Performance, Experimentation, Measurement.

Keywords
Ajax, Predictive Fetch, Web Application, Performance.

1. INTRODUCTION
Ajax, a term first coined by Jesse James Garret [7], is really a set
of technologies that provide a new way of designing and
developing Web applications. The technologies work together in
different parts of the application, each of which provides specific
functionality to collectively create a powerful Web application
[9]. Google Maps, Google Suggest, Yahoo Mail, Gmail and A9
Product Search are several examples of the real world

applications that show the usefulness of this technique.

One of the primary goals of Ajax implementation on Web
applications is to improve the user’s experience of response time.
The response time is defined as the time between sending a
request and receiving the response. By reducing response time,
Ajax can provide a significantly better user experience. Ajax can
improve response time by communicating with the server without
full-page requests. In addition, the response time of Ajax Web
applications can be further improved by implementing a Web
prefetching technique such as Asynchronous Predictive Fetch
used in this paper.

Web prefetching is a technique that is commonly applied to
reduce the access latency perceived by the Web user. This
technique enables a Web application to prefetch data from the
server so that it is immediately available upon user actions. It is
clear that the Web application must prefetch using accurate
information in order to achieve reasonable performance that
justifies the additional resources consumed (bandwidth, extra
server load) [2].

2. MOTIVATION
Even though the implementation of Ajax in Web applications is
gaining popularity, few researches have been published showing
the performance of the Ajax applications compared to the
traditional Web applications in which full-page refresh is always
implemented. Merill’s application test[4] found the total
bandwidth savings of 61% due to the use of Ajax approach.
White [1] reported that there was 73% improvement in the
number of bytes transferred in the Ajax application over the
traditional version. He also showed that the user could save on
average 32% of the time required to complete the tasks in the
Ajax version. However, the two applications did not implement
the same user interface and the impact of sales personnel’s skill
that could significantly affect the reported figure was not
investigated. C. Smullen and S. Smullen [5, 6] found that a
typical user would see a performance increase in the response
size of 55% and a mean service time improvement of
approximately 16%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2008, November 24–28, 2008, Linz, Austria.
(c) 2008 ACM 978-1-60558-349-5/08/0011 $5.00.

iiWAS 2008 Proceedings of iiWAS2008

345

All these works show that Ajax applications perform better than
classic Web applications in terms of response size and service
time. However, their investigations were mainly focused on
reducing the bandwidth use through the implementation of Ajax.
This proposed work tries to improve the performance of Ajax-
enabled Web applications in terms of user’s experience of
response time by implementing Asynchronous Predictive Fetch
approach.

3. ASYNCHRONOUS PREDICTIVE
FETCH
Asynchronous Predictive Fetch is a kind of Web prefetching
techniques that implements both the prediction and the
prefetching engine in the client’s Web browser, programmed in
JavaScript language code. We refer to this method as Predictive
Fetch in references [10, 11].

To help predict what the user will do next, the Asynchronous
Predictive Fetch could potentially use some hints such as a user’s
profile and current activity. In our implementation case,
however, we use cues derive from a user’s current actions
through the user interface. In this context, the user’s current
actions are divided into two categories:

• Synchronous user actions are the actions done by a
user, such as clicking a link or a button, resulting in a
new response displayed on the screen.

• Asynchronous user actions, on the other hand, are the
actions done by a user, such as hovering a mouse
pointer over a button or selecting an item in a drop-
down list, causing no change in the currently displayed
page on the screen.

Based on the above definitions, Asynchronous Predictive Fetch
approach in this research is employed by utilizing information
derived from asynchronous user actions.

The prefetching engine employed in the Asynchronous Predictive
Fetch is an Ajax engine. It is the engine that relies on the
XMLHttpRequest object responsible for making requests to, and
handling responses from the server. The Ajax engine may have
more than one XMLHttpRequest object to make multiple
requests simultaneously.

Asynchronous Predictive Fetch requires a cache in order to keep
all prefetched responses. In our implementation case, we use the
Browser-side Cache [10] that is a JavaScript object that holds the
request and its corresponding response in pairs. The requests are
the cache keys and the responses are the cache values. When the
browser is to make a request the server, the cache will be first
interrogated. If the request is in the cache, it means that the
corresponding response must have already been in there. All the
application scripts need to do is just pick the response up and
display it to the user’s screen. Further request processing to the
server is then unnecessary.

4. IMPLEMENTATION
The application used in our implementation case is a sample
Web application that provides academic-related information to
students in our campus, Polytechnic, Andalas University,

Indonesia. Information that are extracted either statically from
files or dynamically from a database include information of
campus’ academic year, syllabus or course information for each
study program, students’ personal data and transcript of
academic records. The application is built based on MVC
(Model-View-Controller) design pattern. The Web server is
Apache installed on Windows Operating System. The application
uses PHP 5, Smarty template engine and PostgreSQL database
server. All responses retrieved from the server are coded in
XHTML format.

Figure 1. User interface layout
Figure 1 shows the user interface layout of our sample Web
application. The header and footer parts are static views. The
page contents on the left side, however, are dynamically updated
to display the information requested by the user. On the right
side of the layout locates a log in form, publicly accessible links,
and a calendar box. Some user-specific links, e.g. additional
links for students, will be added to the current links when he or
she successfully logs in the system. Keyboard input such as the
Tab and the Enter buttons, and a mouse pointer can be used to
navigate over the links and form elements.

When the user moves the mouse pointer over a textual link, the
mouseover event on that link is fired. If the event handler
capturing this event is designed to invoke an Asynchronous
Predictive Fetch process, it will then ask the XMLHttpRequest
for making a request to the server. This request corresponds to
the link on which the mouseover event is tr iggered. While the
request is in progress, the user may quickly move the mouse
pointer over another link without clicking the previous link.
Again, another request may be accomplished if the event handler
specific to the link is also designed to do the same thing as
before while the user does not actually click the link. As a
consequence, these two user actions will make two unwanted
requests resulting wasted bandwidth.

To reduce the impact on user actions as described above, the
prefetching mechanism of Asynchronous Predictive Fetch should
not solely rely on the onmouseover event to a link in order to
start making an asynchronous request. Instead, we combine the
onmouseover event with an estimated delay time before finally
calling the server for a request. By this approach, when the user

Proceedings of iiWAS2008 iiWAS 2008

346

moves the mouse pointer over a link, a timer will be set. If the
user quickly moves his mouse out of the boundary of current link
while the timer is not fired yet, the onmouseout event triggered
by the user action will reset the previous timer function on that
link causing no prefetching process will be taken. In the other
way, if the user is still hovering the mouse pointer over that link
and the timer is eventually fired, then an asynchronous call will
be accomplished. However, determining the value of delay time
is not an easy work. If we set the time too short, say 50
milliseconds, excessively un-demanded requests may result. On
the other hand, if the delay time is too long, say 10 seconds, the
prefetching function may not work at all.

To help estimating an appropriate delay time, a heuristic data
related to various speeds of a user’s actions through the user
interface should be collected before developing an application.
After having done some experiments, we define several
heuristics as follows:

• When a user hovers/moves a mouse over a textual link and
clicks it, how long the time duration is needed to do the click
action? (onmouseover onclick)

o A very fast action takes around 125 – 250 milliseconds.
o A fast action takes around 250 – 850 milliseconds.
o A normal action takes more than 850 milliseconds.

• When a user hovers/moves a mouse over a button and clicks
it, how long the time duration is needed to do the click
action? (onmouseover onclick)

o A very fast action takes around 125 – 250 milliseconds.
o A fast action takes around 250 – 750 milliseconds.
o A normal action takes more than 750 milliseconds.

• When a user selects an item in a drop-down list and clicks on
the ‘Go’ button, how long the time duration is needed?
(onchange onclick)

o A very fast action takes around 350 – 450 milliseconds.
o A fast action takes around 450 – 1000 milliseconds.
o A normal action takes more than 1000 milliseconds.

The user’s speed of using a mouse is relatively same as that of a
keyboard. However, in many cases, using a keyboard button
seems to take more time than using a mouse pointer, because it is
relatively difficult to make sure that an element is getting
focused before pressing the Enter button on the keyboard to start
making a request.

4.1 Asynchronous User Actions
The implementation of Asynchronous Predictive Fetch in our
Web application is developed by using a heuristic approach. The
heuristic is based on specific contexts of a user’s intentions and
actions through the user interface. The user’s intention is derived
by investigating all kinds of information that are provided by the
application. Some user’s intentions may involve more than one
user’s action. In this case, the actions are divided into sub-goal
actions and a main-goal action, the final action to realize the
user’s intention.

Some of the user’s actions through the user interface of our Web
application are described as follows:

• If a mouse pointer is hovered over a link for several
milliseconds, say 250 milliseconds, anticipate the
user’s click action on that link by requesting the
appropriate data in advance.

• If a user is willing to log in to the system by filling
his/her user name and password in the log-in form,
make an asynchronous call to the server as soon as the
mouse pointer hovers over the submit button of the
form.

• If a user is going to see a course list of a study program,
make an asynchronous call to the server right after the
user has just selected an item in a drop-down list
anticipating the user’s click action on the ‘Go’ button.

4.2 Synchronous User Actions
In the previous section, we define synchronous user actions as
the actions done by a user, such as clicking a link or a button,
resulting in a new response displayed on the screen. Instead of
simply making a request and keeping the response in the cache
as what the asynchronous user actions really do it, the
synchronous user actions are the actions that are intentionally
done by the user to view that something is updated in the user
interface.

4.3 Measurement Procedure
Measuring the time to complete a task is one of the most useful
metrics when looking at the success of an Ajax implementation.
The actual measurement process consists of three steps:
identifying a task's starting and ending points, adding procedures
to measure the starting and ending times, and combining
multiple data measurements to gain useful information [8].

In our implementation case, we are recording the time to access
information of campus’ academic year, syllabus or course
information for each study program, students’ personal data and
transcript of academic records. These activities are done by the
user through the user interface shown in the user’s machine. All
recording processes are then carried out in the user’s machine by
including recording scripts, written in JavaScript code, within the
application. In addition to collecting the process-time data, our
implementation case is also measuring the response size or
bandwidth use for the entire process. The measurement process
is also performed in the user side by using a measurement tool
(http://www.webperformanceinc.com/analyzer/).

5. DATA COLLECTION
To measure the performance of proposed research, two versions
of Ajax-enabled Web applications were developed. One version
was developed by implementing synchronous Ajax only (labeled
as AJAX hereafter), and the other version was built with the
capability of Asynchronous Predictive Fetch (labeled as APF-
AJAX hereafter). Both the Ajax applications render the same
“look and feel” user interface at the presentation level.

The metric used to evaluate the performance of the Ajax-enabled
Web applications is mainly based on the user’s experience of
response time that is the application responsiveness.
Nevertheless, investigating the bandwidth consumed for the

iiWAS 2008 Proceedings of iiWAS2008

347

entire process, by measuring the total size transferred during a
test case session, is also taken into account.

For this to be a fair comparison, several guidelines were used in
the execution of the test case:

• The test case consisted of three sessions marked as
Session A, B and C, respectively. Each of which
consisted of a fixed number of tasks and was
accomplished by a user in the same order.

• Before conducting the test case, a measurement tool
was launched in the user’s machine.

• Before starting collecting data for one session, the
server was “warmed up” by taking some readings of
data [3]. This was done because it was never known
how different parts of the application might affect
initial performance, for example, if a SQL database
was hit, the first query might cache the SQL results, so
subsequent queries were faster.

• After warming up the server, the browser’s built-in
cache was cleared. This simulated hitting the server for
the very first time.

• Session A, B, and C consisted of 20, 27, and 34
numbers of specific tasks or queries, respectively. Each
of the test case session was conducted 20 times on
several days through the Internet.

All the tests were done by the author performing various speeds
of a user’s actions through the user interface as described in the
previous section.

6. ANALYSIS
Relying on the true power of Ajax that can asynchronously
interact with the server is the main reason to have a big
opportunity to improve the response time of performed user’s
actions. Asynchronous interaction means that we can ask the
server for only small amount of data required to update the
current user’s display. It results in less time to process a request
in the server, to send the response to the client machine, and to
render it on the user interface. Furthermore, having the abilit y to
prefetch data in advance in anticipating the user’s actions can
make the effort of decreasing the response time much more
achievable.

Incorporating Asynchronous Predictive Fetch in an Ajax Web
application would result in better application responsiveness.
However, in some cases, this might not be true. When the user
starts making a request by clicking a link for instance, our
implementation algorithm may get informed that an
asynchronous predictive fetch (APF) process for that request has
just been launched. It then forces the synchronous user action
(SUA) process idle for a moment while waiting the APF process
to complete its job. Unfortunately, for something unknown
happens in the network resulting in a bit long downloading time
or since the response size is too big, the timeout delay set in the
SUA process is over while the APF process is still accomplishing
its work. At that time, the SUA process then begin making its
own request to the server and it finally gets the response and

renders it to the user interface. What can be learned from this
possible case is that the APF-AJAX implementation may
introduce worst application responsiveness than does the AJAX
application. This is because there is an extra waiting time needed
before the SUA process finally gets started.

We could hardly cope with the first cause explained the above
scenario, because the problem has likely nothing to do with the
server and the Web application running on it. The second cause,
however, could be addressed by applying some strategies. One
approach is that we may perform such a profiling test to measure
the typical response time needed to download the typical
document size of our resources that would serve the user. It is not
easy to figure out the size and its corresponding download time
to all bits and pieces of data we have. However, in our
implementation case, we found that estimating the typical size of
student’s personal data or syllabus, for instance, was not too
difficult. All students relatively had the same amount of data
size. Most of data size we had in our database was ranging from
around 5 KB to 50 KB in size, with around 10 KB in the
average. So we tried to measure the response time of those
estimated data sizes through the Internet connection. By using
our measurement tool, we also enabled to observe other websites
in the Internet and helped us to draw such a baseline data. After
having the approximation values of the response time for specific
data size, we then got an idea to estimate the timeout delay
needed for specific user requests. In our implementation case the
timeout delay is around 500 – 1,000 msec..

Another method that can be used to address the aforementioned
issue is start pushing the response to the screen, without waiting
until the whole response successfully downloaded, by using the
JavaScript setInterval function that would run every few
milliseconds. This can be realized by capturing the current
readyState value of the APF process making the corresponding
request. This strategy can improve the perceived performance,
that is, the speed is vastly faster when in fact the total amount of
download time is roughly similar, but it makes a dramatic
perceived difference [3].

To calculate the performance improvement that can be achieved
through the implementation of Asynchronous Predictive Fetch
approach to an Ajax-enabled Web application, we define the
Performance Improvement (PI) [1] as:

(AJAX value – APF-AJAX value)
* 100.

AJAX value

The PI value denotes the percentage improvement of the APF-
AJAX application compared to the AJAX application developed
in our implementation case. Any positive value states that there
is a saving gained by using the APF-AJAX application. The
larger the value is, the more the saving would be. Conversely,
any negative value states the other, opposite condition.

Table 1 shows the summary of the average response times and
their corresponding PI for each test case session. As can be seen
in the Table 1, the performance improvement related to the
response time that is gained due to the use of APF-AJAX is over
62% on all the test case sessions. It means that we can save our

Proceedings of iiWAS2008 iiWAS 2008

348

time about 62% when accessing the APF-AJAX application
compared to that of the AJAX application.

Table 1. Summary of PI by the average response time

Average Response Time (msec.)Application
Type Session A Session B Session C

AJAX 7,571 9,675 13,475

APF-AJAX 2,667 3,135 5,108

PI (%) 64.8 67.6 62.1

The data comparison also reveals that the user’s experience of
response time is not affected by the number of tasks or queries
the user did during accessing to information of the Web
application. The number of tasks accomplished in the Session B
during the test is fewer than that of in Session C. However, the
former test case shows a better performance improvement, 67.6%
over 62.1% of time savings. In contrast, the number of tasks
performed in the Session B is more than that of in Session A.
Again, the former shows a better performance improvement,
67.6% over 64.8% of time savings.

Table 2. Response time for all the test case sessions

Response Time (msec.)Application
Type Min Mean Max Total

AJAX 80 379 1,196 30,721

APF-AJAX 10 135 980 10,910

PI (%) 87.6 64.5 18.1 64.5

Table 2 presents summary of the minimum, mean, maximum,
and total response time and their corresponding PI values
accumulated from the whole test case sessions. Inspecting
information presented in the Table 2, we may assume that the
performance improvement of response time due to the use of
APF-AJAX seems to be linear to the amount of time needed to
download and display the response retrieved from the server. The
lower response time is, the greater the performance increase will
do. With a time of 80 milliseconds needed by the AJAX to
download a response, the performance improvement reaches
around 88%, while downloading a response with the estimated
download time of around one second, the performance
improvement is only about 18%. The average PI, however, is
64.5%.

Figure 2 plots a visual graph of the relationship between
response time perceived by the AJAX and the corresponding
performance improvement that could be achieved by the
implementation of APF-AJAX. It can be seen in Figure 2 that
the performance increase is not completely linear to the amount
of time needed by the browser to the download a response. Even
though the download time of a response needed by AJAX is
lower, say 134 milliseconds, the PI value is much lower
compared to that of a 450-msec. response (43% vs 93%). It
means that the performance increase of response time is
improvable even the download time is long. This phenomenon

can be learned by examining the graph curve on rightmost side of
the Figure 2.

0

20

40

60

80

100

80 134 252 281 289 305 317 321 335 338 346 356 372 384 393 407 422 432 440 450 506 624 1058

AJAX response time (msec)

PI
(%

)

Figure 2. PI versus AJAX response time

Summary of the average values of total transferred data size, the
bandwidth use, and their corresponding PI is shown in Table 3.
The negative values of PI denote the performance decrease due to
the use of APF-AJAX application. This performance decrease is
resulted from two issues related to the APF-AJAX
implementation. Firstly, the client’s browser needs to download
additional resources, the JavaScript code, to manage the
functionality of Asynchronous Predictive Fetch process in the
client side. Secondly, in most cases, the APF-AJAX application
prefetches information from the server in anticipation of the
user’s actions. As a result, some amounts of resources that have
been downloaded and kept in the Browser-side Cache are not
used.

Table 3. Summary of PI by the total data transfer

Total Size (KB)Application
Type Session A Session B Session C

AJAX 244 268 375

APF-AJAX 270 280 403

PI (%) -10.8 -4.5 -7.6

Another thing that can be learned from Table 3 is that the
performance decrease has nothing to do with the number of tasks
or queries performed during the test case sessions. Session C
takes more tasks or queries than Session B so the performance
decrease introduced by Session C is higher than does Session B
(-7.6% over -4.5%). However, compared to Session A, the
performance decrease resulted from Session C is lower (-7.6%
against -10.8%).

Figure 3 draws the performance decrease that was perceived due
to the implementation of APF-AJAX. It is shown in Figure 3 that
in the worst case, the performance decrease introduced by APF-
AJAX application could reach 27% compared to AJAX. In most
cases, however, the performance decrease is lower than 3%.
Furthermore, the deployment of broadband technologies is now
commonplace, so the wasted bandwidth due the implementation
of Asynchronous Predictive Fetch is not a big issue.

iiWAS 2008 Proceedings of iiWAS2008

349

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0
24

9
24

9
25

0
27

4
27

4
27

4
27

4
29

5
29

6
30

3
38

0
38

0
38

1
38

2
43

8

APF-AJAX bandw idth use (KB)

P
I (

pe
rc

en
t)

Figure 3. PI versus APF-AJAX bandwidth use

7. CONCLUSION AND FUTURE WORK
We have proposed the implementation of Asynchronous
Predictive Fetch to improve the performance of Ajax-enabled
Web applications. Through the implementation case, we found
that this method provided a performance improvement of average
response time of 64.5%. So we can conclude that the users’
experience of response time is improved significantly due to the
implementation of the Asynchronous Predictive Fetch approach.

The performance improvement of user’s experience of response
time is not affected by the number of tasks or queries done by a
user. It mainly depends on the user’s behaviors through the user
interface and the accuracy level of prediction method applied in
the application. Related to these aspects, we also found that the
performance improvement is not linear to the amount of time
needed to download a response. However, by providing a small-
size response that requires less download time, the performance
improvement of at least 33% can be likely achieved. Fortunately,
the nature of Ajax that enables Web applications to partially
refresh the user interface by transferring less data makes this
“rule of thumb” achievable. Moreover, by the power of making
as many as data requests behind the scene, the Asynchronous
Predictive Fetch would be able to satisfy this rule.

In accordance with our implementation study, there are issues
that would be further addressed. We wish to know how much the
performance improvement of response time experienced by the
user is affected by large data sizes downloaded from the server.

We are also looking forward to evaluating the effectiveness of
the approach by combining with other prefetching hints such as
the user’s profile and history and information of the user’s
current activities on the user interface.

8. REFERENCES
[1] Alexei White, “Measuring the Benefits of Ajax”,

http://www.developer.com/xml/article.php/3554271.

[2] B. De La Ossa, et al., “Delfos: the Oracle to Predict Next
Web User’s Accesses”, Proceedings of 21st International
Conference on Advanced Networking and Application,
IEEE, 2007.

[3] Brad Neuberg, “Tutorial: How to Profile and Optimize Ajax
Applications“, http://codinginparadise.org/weblog/ 2006/08/
tutorial-how-to-profile-and-optimize.html, 2006.

[4] C. L Merill, ”Using Ajax to Improve the Bandwidth
Performance of Web Applications”, Web Performance. Inc,
2006.

[5] C. Smullen and S. Smullen, “Modelling AJAX Application
Performance”, 524-074, Web Technologies, Applications,
and Services 2006, ed. J.T. Yao, ACTA Press, Calgary,
2006.

[6] C. Smullen and S. Smullen, “Ajax Application Server
Performance”, Proceedings of the IEEE SoutheastCon 2007,
Richmond, Virginia, pp. 154-158, March 22-25, 2007.

[7] Jesse James Garret, “Ajax: A New Approach to Web
Applications”, http://www.adaptivepath.com/ideas/essays/
archives/ 000385.php, 2005.

[8] Joshua Eichorn, “Understanding AJAX: Using JavaScript to
Create Rich Internet Applications”, Prentice Hall, USA,
2006.

[9] Matthew Eernisse, “Build Your Own AJAX Web
Applications”, SitePoint Pty. Ltd., USA, 2006.

[10] Michael Mahemoff, “Ajax Design Patterns”, O'Reilly
Media, Inc., USA, 2006.

[11] Nicholas C. Zakas, et al., “Professional Ajax 2nd Edition”,
Wiley Publishing, Inc., USA, 2007.

Proceedings of iiWAS2008 iiWAS 2008

350

