Computer Science > Logic in Computer Science
[Submitted on 30 Nov 2009 (v1), last revised 6 Apr 2010 (this version, v2)]
Title:A Theory of Sampling for Continuous-time Metric Temporal Logic
View PDFAbstract:This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.
Submission history
From: Carlo Alberto Furia [view email][v1] Mon, 30 Nov 2009 13:51:26 UTC (93 KB)
[v2] Tue, 6 Apr 2010 12:08:17 UTC (118 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.