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Abstract

We present the design and analysis of a near linear-worki@aabyorithm for solving symmetric diag-
onally dominant (SDD) linear systems. On input of a SBIDy-n matrix A with m non-zero entries and a
vectorb, our algorithm computes a vectdrsuch that|i — ATb||4 < e - |[A1b|| 4 in O(mlog®™M nlog 1)
work andO(m!/?+% log 1) depth for any fixed > 0.

The algorithm relies on a parallel algorithm for generatimg-stretch spanning trees or spanning sub-
graphs. To this end, we first develop a parallel decompasétigorithm that in polylogarithmic depth and
O(|E|) work?, partitions a graph into components with polylogarithmandeter such that only a small frac-
tion of the original edges are between the components. Hmide used to generate low-stretch spanning
trees with average stretéh(n®) in O(n'*) work andO(n®) depth. Alternatively, it can be used to gen-
erate spanning subgraphs with polylogarithmic averagsc$trin 5(|E|) work and polylogarithmic depth.
We apply this subgraph construction to derive a paralleldimsystem solver. By using this solver in known
applications, our results imply improved parallel randpadi algorithms for several problems, including
single-source shortest paths, maximum flow, minimum-cost, fand approximate maximum flow.

1 Introduction

arXiv:1111.1750v1 [cs.DS] 7 Nov 2011

Solving a system of linear equatiords: = b is a fundamental computing primitive that lies at the corenahy
numerical and scientific computing algorithms, includihg popular interior-point algorithms. The special case
of symmetric diagonally dominant (SDD) systems has seestanbal progress in recent years; in particular,
the ground-breaking work of Spielman and Teng showed howlesSDD systems to accuraeyin time
5(m log(%)), wherem is the number of non-zeros in theby-n-matrix A.? This is algorithmically significant
since solving SDD systems has implications to computingreigctors, solving flow problems, finding graph
sparsifiers, and problems in vision and graphics (Sg&lf0 Ten1( for these and other applications).

In the sequential setting, the current best SDD solversma(in log n(log log n)? log(%)) time [KMP11].
However, with the exception of the special case of planar Spfiems KM07], we know of no previous
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1The5(~) notion hides polylogarithmic factors.

2The Spielman-Teng solver and all subsequent improvemeatsiadomized algorithms. As a consequence, all algoritieiying
on the solvers are also randomized. For simplicity, we otaitdard complexity factors related to the probability aber
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parallel SDD solvers that perform near-lindavork and achieve non-trivial parallelism. This raises auret
question:ls it possible to solve an SDD linear systenvim) depth andO(m) work? This work answers this
question affirmatively:

Theorem 1.1 For any fixedd > 0 and anye > 0, there is an algorithngDDSolve that on input am x n SDD
matrix A with m non-zero elements and a vectgrcomputes a vecta¥ such that|z — ATb||4 < e [|[ATb|a
in O(m1log®™M nlog 1) work andO(m!/?+%1og 1) depth.

In the process of developing this algorithm, we give pakallgorithms for constructing graph decompo-
sitions with strong-diameter guarantees, and parall@rialgns to construct low-stretch spanning trees and
low-stretch ultra-sparse subgraphs, which may be of inudgma interest. An overview of these algorithms and
their underlying techniques is given in Secti@n

Some Applications. Let us mention some of the implications of Theorén, obtained by plugging it into
known reductions.

— Construction of Spectral SparsifierSpielman and Srivastav&$08§ showed that spectral sparsifiers can
be constructed usin@N(log n) Laplacian solves, and using our theorem we get spectral ansparsifiers in
O(m!'/3+%) depth andD (1) work.

— Flow Problems.Daitsch and SpielmarD[S0§ showed that various graph optimization problems, such as
max-flow, min-cost flow, and lossy flow problems, can be reduon(m1/2) application$ of SDD solves

via interior point methods described ig97, Ren01 BV04]. Combining this with our main theorem implies
that these algorithms can be parallelized to ru®im:>/+?) depth andO(m?/?) work. This gives the first
parallel algorithm witho(n) depth which is work-efficient to withipolylog(n) factors relative to the sequential
algorithm for all problems analyzed iDE0d. In some sense, the parallel bounds are more interestangy th
the sequential times because in many cases the resulBS0d are not the best known sequentially (e.g.
max-flow)—but do lead to the best know parallel bounds fotbfmms that have traditionally been hard to
parallelize. Finally, we note that althougb$0g does not explicitly analyze shortest path, their analysis
naturally generalizes the LP for it.

Our algorithm can also be applied in the inner loop@KM*10], yielding a0 (m®/%*%poly(s~')) depth
andO(m*3poly(¢~1)) work algorithm for findingl —  approximate maximum flows arid+ ¢ approximate
minimum cuts in undirected graphs.

2 Preliminaries and Notation

We use the notatio®(f(n)) to meanO(f(n) polylog(f(n))). We used s B to denote disjoint unions, arj

to denote the s€ftl, 2, ..., k}. GivenagraplG = (V, E), let dist(u, v) denote theedge-count distand@r hop
distance) between andv, ignoring the edge lengths. When the graph has edge lend#)Salso denoted by
we), letdg(u, v) denote theedge-length distancehe shortest path (according to these edge lengths) betwee
u andv. If the graph has unit edge lengths, the two definitions édancWe drop subscripts when the context
is clear. We denote by (G) andE(G), respectively, the set of nodes and the set of edges, and4s@’ (G)|

3i.e. linear up to polylog factors.
*hereO hideslog U factors as well, where it's assumed that the edge weightmigers in the rangd . . . U]



andm = |E(G)|. For an edge = {u,v}, the stretch ok on G’ is strgr(e) = dg(u,v)/w(e). Thetotal
stretchof G = (V, E, w) with respect tai' is str/ (E(G)) = }_.c () Strer (€)-

GivenG = (V, E), a distance functioa (which is eitherdist or d), and a partition of” into C; W Cy &
... W Oy, let G[C;] denote the induced subgraph on 6gt Theweak diameteof C; is max, yec; dG(u,v),
whereas thestrong diameterof C; is max, vec; dg(c; (v, v); the former measures distances in the original
graph whereas the latter measures distances within theeddiubgraph. The strong (or weak) diameter of the
partition is the maximum strong (or weak) diameter overtadl tomponent€’;’s.

Graph Laplacians. For a fixed, but arbitrary, numbering of the nodes and edgesgraphG = (V, E), the
LaplacianL¢ of G is the|V|-by-|V'| matrix given by

L (i, ) :{ ’ L
DopiiteE@ Wi fi=]

When the context is clear, we uékand L interchangeably. Given two graplisand H and a scalap € R,
we sayG =< pH if uLy — L¢ is positive semidefinite, or equivalently’ Loz < pz " Ly for all vector
z e RIVI.

Matrix Norms, SDD Matrices. For a matrix4, we denote byd™ the Moore-Penrose pseudoinversedd.e.,
AT has the same null space 4sand acts as the inverse dfon its image). Given a symmetric positive semi-
definite matrixA4, the A-normof a vectorz is defined agz|| 4 = Vo T Az. A matrix A is symmetric diagonally
dominant (SDD) if it is symmetric and for al| A;; > Z#i |A; ;|. Solving an SDD system reduces@rm,)
work and O(logo(l) m) depth to solving a graph Laplacian (a subclass of SDD matrocgresponding to
undirected weighted graphsp{e96 Section 7.1].

Parallel Models. We analyze algorithms in the standard PRAM model, focusmthe work and depth param-
eters of the algorithms. Byork, we mean the total operation count—andd®pth we mean the longest chain
of dependencies (i.e., parallel time in PRAM).

Parallel Ball Growing. Let B (s, r) denote the ball of edge-count distancitom a sources, i.e., Ba(s,r) =

{v € V(G) : distg(s,v) < r}. We rely on an elementary form of parallel breadth-first sledo compute
Bg(s,r). The algorithm visits the nodes level by level as they ar@entered in the BFS order. More precisely,
level 0 contains only the source nodelevel 1 contains the neighbors a&f and each subsequent leve}- 1
contains the neighbors of levés nodes that have not shown up in a previous level. On stdndarallel
models (e.g.CRCW), this can be computed i@(r logn) depth andD(m’ + n’) work, wherem’ andn’ are
the total numbers of edges and nodes, respectively, erareahin the searcHfY91, KS97]. Notice that we
could achieve this runtime bound with a variety of graph (iRptepresentations, e.g., using the compressed
sparse-row (CSR) format. Our applications apply ball gngronr rougthO(logO(l) n), resulting in a small
depth bound. We remark that the idea of small-radius pafadik growing has previously been employed in
the context of approximate shortest paths (see, éJy.91, KS97, Coh0(Q). There is an alternative approach
of repeatedly squaring a matrix, which can give a bettertdbptind for large- at the expensef a much larger
work bound (about?).

Finally, we state a tail bound which will be useful in our ayséé. This bound is easily derived from
well-known facts about the tail of a hypergeometric rand@mable [Chv79 Hoe63 Ska09.

Lemma 2.1 (Hypergeometric Tail Bound) Let H be a hypergeometric random variable denoting the number
of red balls found in a sample of balls drawn from a total ofV balls of whichM are red. Then, ifu =



E [H] =nM/N, then
PriH >2u] < e M4

Proof: We apply the following theorem of HoeffdindChv79 Hoe63 Ska09. For anyt > 0,

Pr[qu—l—tn]g(( p )”*t(l;p)l‘p‘t)"’

p+t 1—-p—1

wherep = u/n. Usingt = p, we have

Pr[H > 2u] <

(6=
(e 1 2) ™)

1—-2p

where we have used the fact that © < exp(z). [

3 Overview of Our Techniques

In the general solver framework of Spielman and Te8§(Q6 KMP10], near linear-time SDD solvers rely
on a suitable preconditioning chain of progressively semadiraphs. Assuming that we have an algorithm
for generating low-stretch spanning trees, the algoritsrgigen in KMP10] parallelizes under the following
modifications: (i) perform the partial Cholesky factoripatin parallel and (ii) terminate the preconditioning
chain with a graph that is of size approximately/3. The details in Sectiof are the primary motivation of
the main technical part of the work in this chapter, a paraig@lementation of a modified version of Alon et
al.’s low-stretch spanning tree algorith®iKPW95].

More specifically, as a first step, we find an algorithm to emaeagaph into a spanning tree with aver-
age stretctpO(VIcgnloglogn) in O (m) work andO(20(Viesnloglogn) 1og A) depth, whereA is the ratio of the
largest to smallest distance in the graph. The original AK&gorithm relies on a parallel graph decompo-
sition scheme of AwerbuchAive85, which takes an unweighted graph and breaks it into commuisneith a
specified diameter and few crossing edges. While such scharadénown in the sequential setting, they do not
parallelize readily because removing edges belonging éocomponent might increase the diameter or even
disconnect subsequent components. We present the firdimesarwork parallel decomposition algorithm that
also gives strong-diameter guarantees, in Seetj@amnd the tree embedding results in Sectich

Ideally, we would have liked for our spanning trees to havelglpgarithmic stretch, computable by a poly-
logarithmic depth, near linear-work algorithm. Howeven;, dur solvers, we make the additional observation
that we do not really need a spannitige with small stretch; it suffices to give an “ultra-sparse” grawith
small stretch, one that has ory(m/ polylog(n)) edges more than a tree. Hence, we present a parallel algo-
rithm in Sectiorb.2which outputs an ultra-sparse graph witipolylog(n)) average stretch, performin@(m)
work with O(polylog(n)) depth. Note that this removes the dependendegoh\ in the depth, and reduces both



the stretch and the depth frozff(viesnloglogn) to O (polylog(n)).> When combined with the aforementioned
routines for constructing a SDD solver presented in Se@jdhis low-stretch spanning subgraph construction
yields a parallel solver algorithm.

4 Parallel Low-Diameter Decomposition

In this section, we present a parallel algorithm for pamtitng a graph into components with low (strong)
diameter while cutting only a few edges in each of thdisjoint subsets of the input edges. The sequential
version of this algorithm is at the heart of the low-stretparming tree algorithm of Alon, Karp, Peleg, and
West (AKPW) [AKPW95].

For context, notice that the outer layer of the AKPW algarnitfmore details in Sectiof) can be viewed as
bucketing the input edges by weight, then partitioning amutracting them repeatedly. In this view, a number
of edge classes are “reduced” simultaneously in an itarafirther, as we wish to output a spanning subtree
at the end, the components need to have low strong-diame&teofe could not take “shortcuts” through other
components). In the sequential case, the strong-diametpery is met by removing components one after
another, but this process does not parallelize readily.tf@parallel case, we guarantee this by growing balls
from multiple sites, with appropriate “jitters” that corptaally delay when these ball-growing processes start,
and assigning vertices to the first region that reaches tAdrase “jitters” terms are crucial in controlling the
probability that an edge goes across regions. But this pilityaalso depends on the number of regions that
could reach such an edge. To keep this number small, we uggeateel sampling procedure motivated by
Cohen’s(3, W)-cover constructionQoh93.

More concretely, we prove the following theorem:

Theorem 4.1 (Parallel Low-Diameter Decomposition)Given an input graptG = (V, Ey W ... W Ey) with
k edge classes and a “radius” parameter the algorithmPartition(G, p), upon termination, outputs a
partition of V into component§ = (C1,Cy, ..., C,), each with centes; such that
1. the center; € C; for all i € [p],
2. for eachi, everyu € C; satisfiesdist (¢, (si, u) < p, and
3. forallj =1,...,k, the number of edges iA; that go between components is at mdsy] - %,
wherec; is an absolute constant.

Furthermore Partition runs inO(mlog? n) expected work an@®(plog? n) expected depth.

4.1 Low-Diameter Decomposition for Simple Unweighted Grahs

To prove this theorem, we begin by presenting an algoripmi tGraph that works with simple graphs with
only oneedge class and describe how to build on top of it an algorithah handles multiple edge classes.

The basic algorithm takes as input a simple, unweightedhgap= (V, E) and a radius (in hop count)
parametep and outputs a partitio” into componentg’y, . . . , C,, each with centes;, such that

®As an aside, this construction of low-stretch ultra-spapsephs shows how to obtain ttfé(m)-time linear system solver of
Spielman and TendJT0§ without using their low-stretch spanning trees resHEST05 ABNOS].



(P1) Each center belongs to its own component. That is, thiece € C; for all i € [p];

(P2) Every component has radius at masThat is, for eachi € [p], everyu € C; satisfiesdist ¢, (si, u) <
p;

(P3) Given a technical condition (to be specified) that helik probability at leas8/4, the probability that
an edge of the grapfi goes between components is at mb”’-pétlog?’ n.

In addition, this algorithm runs i®(m log? n) expected work and(plog? n) expected depth. (These proper-
ties should be compared with the guarantees in Thedrém

Consider the pseudocode of this basic algorithm in Algarithl. The algorithm takes as input an un-
weightedn-node graphGG and proceeds i’ = O(logn) iterations, with the eventual goal of outputting a
partition of the graphG into a collection of sets of nodes (each set of nodes is kn@sva @@mponent). Let
G = (v, E®) denote the graph at the beginning of iterattoSince this graph is unweighted, the distance
in this algorithm is always the hop-count distantiet (-, -). For iterationt = 1,..., T, the algorithm picks a set
of starting center$®) to grow balls from; as with Cohen(g3, W)-cover, the number of centers is progressively
larger with iterations, reminiscent of the doubling tritkqugh with more careful handling of the growth rate),
to compensate for the balls’ shrinking radius and to endwatthe graph is fully covered.

Still within iteration ¢, it chooses a random “jitter” valuégt) er {0,1,..., R} for each of the centers
in S® and grows a ball from each centerout to radiusr® — 6\, wherer(®) = oeem (T —t+1). Let
X(® pe the union of these balls (i.e., the nodes “seen” from te&m#ing points). In this process, the “jitter”
should be thought of as a random amount by which we delay theytmaving process on each center, so
that we could assign nodes to the first region that reaches Wiale being in control of the number of cross-
component edges. Equivalently, our algorithm forms themaments by assigning each verteseachable from

one of these centers to the center that minimizes ) (u, s) + 5§t) (ties broken in a consistent manner, e.g.,
lexicographically). Note that because of these “jittesgine centers might not be assigned any vertex, not even
itself. For centers that are assigned some nodes, we intledecomponents in the output, designating them as
the components’ centers. Finally, we constr@ét™!) by removing nodes that were “seen” in this iteration (i.e.,
the nodes inX ))—because they are already part of one of the output comp®remd adjusting the edge set
accordingly.

Analysis. Throughout this analysis, we make reference to varioustdiganin the algorithm and assume the
reader’s basic familiarity with our algorithm. We begin bsowing properties (P1)—-(P2). First, we state an
easy-to-verify fact, which follows immediately by our cheiof radius and components’ centers.

Fact 4.2 If vertexu lies in componen€”, thendist®) (s, ) < (). Moreoveru € B .

We also need the following lemma to argue about strong dieimet
Lemma 4.3 If vertexu € OV, and vertex» € V) lies on anyu-s shortest path irG®, thenv € V.
Proof: Sinceu € O, Fact4.2 implies u belongs toB!”. But dist® (v,i) < dist®(u,i), and hence
belongs toBgt) and X ®) as well. This implies that is assigned tsomecomponenC](t); we claimj = s.

For a contradiction, assume that# s, and hencelist") (v, j) + 55.” < dist® (v, s) + 6. In this case
dist®™ (u, 7) + 65.” < dist® (u, v) + dist® (v, j) + 5§.t) (by the triangle inequality). Now using the assumption,



Algorithm 4.1 splitGraph (G = (V, E), p) — Split an input graptG = (V, E') into components of hop-
radius at mosp.
LetGM = (VD EM) < G. DefineR = p/(2logn). Create empty collection of componeqts
Usedist") as shorthand fodist ), and defineB® (u, 1) & Boo (u,r) = {v € VO | dist® (u,v) < r}.
Fort=1,2,...,T = 2log,n,
1. Randomly sampl€® C V), where|S®I| = o, = 12nY/ T~ [V )| logn, or useS® = VO if [VO)| < o
For each “centert € S®, draws!” uniformly at random fron n [0, ).
Letr® « (T —t+1)R.
For each center e S®, compute the balB!" = B® (s, r® — 5.
LetX(®) = U, g B,
Create componen{$2’§t) | s € SM1 by assigning each € X to the componenfgt) such thats minimizes
dist a (u, 8) + 5" (breaking ties lexicographically).

2L

7. Add non—empt;C@ components t@.
8. SetV () v\ X® and letGHHD « GOV D], Quit early if V(1) is empty.
ReturnC.

this expression is at moslst® (u, v) + dist® (v, s) + 0% = dist® (u, s) + 6\ (sincev lies on the shortest
u-s path). But theny, would be also assigned (Cij(t), a contradiction. |

Hence, for each non-empty componefﬁ‘ﬁt), its centers lies within the component (since it lies on the

shortest path from to anyu € Cét)), which proves (P1). Moreover, by Fat2 and Lemmai.3, the (strong)
radius is at most'R, proving (P2). It now remains to prove (P3), and the work amgtld bounds.

Lemma 4.4 For any vertexu € V, with probability at leastl — n~9, there are at moséS log? n pairs® (s, t)
such thats € S® andu € BM (s, r®),

We will prove this lemma in a series of claims.
Claim 4.5 Fort € [T] andv € VO, if | BO (v, 7¢H+D)| > n!=t/T thenv € X® w.p. at leastl — n~'2.
Proof: First, note that for any € S®, r®) — ¢, >+ — R = r(+1D "and so ifs € B® (v,7+1), then
v e B and hence inx(®). Therefore,

Pr |:’U e X(t)] > Pr [5@) A BO (v, rt+1D) 2 (7)] ,

which is the probability that a random subsefigt) of sizeo; hits the ballB®) (v, ~(*+1)). But,

300801 9] 1 (- )

which is at least — n—12. [

Claim 4.6 For t € [T] andv € V, the number of € S*) such thaty € B®(s,7®) is at most34 log n w.p. at
leastl — n=5.

®In fact, for a givens, there is a uniqué—if this s is ever chosen as a “starting point.”



Proof: Fort = 1, the sizes; = O(log n) and hence the claim follows trivially. Fer> 2, we condition on all
the choices made in rounds?2, . .., ¢t — 2. Note that ifv does not survive i ‘-1 then it does not belong to
V) either, and the claim is immediate. So, consider two casgmrtling on the size of the ba*—) (v, ()
in iterationt — 1:

— Case 1.If [B¢=D(y,r®)| > p1=(=1/T then by Claim 3.5, with probability at least— n~'2, we have
v € X1 sov would not belong toV' () and this meanso s € S® will satisfy v € B (s,r®), proving
the claim for this case.

— Case 20therwise| B (v, 7®))| < n'=¢=D/T We have
as BY (v, r®) ¢ BE=D(y,+®). Now let X be the number of such thatv € B® (s, r®), so X =
> wes® Lisen® w0y Over the random choice 6",

t t
Pr [s € BO(w, 0] = EL0rDl ¢ Ly

\V(t)y - yv(t)\ ’

which gives
E[X]=o0;-Pr [s € B(t)(v,r(t))] < 17logn.

To obtain a high probability bound fox, we will apply the tail bound in Lemma. 1 Note thatX is simply
a hypergeometric random variable with the following parteresetting: total ballsV = |V®)|, red balls
M = |B®(v,7®)|, and the number balls drawnds. ThereforePr [X > 34logn] < exp{—1 - 34logn}, so
X < 34logn with probability at least — n 2.

Hence, regardless of what choices we made in roun@s . . ,¢ — 2, the conditional probability of seeing
more tharB4 log n different s's is at most»—%. Hence, we can remove the conditioning, and the claim fallow
[ |

Lemma 4.7 If for each vertexu € V, there are at mos68log®n pairs (s,t) such thats € S andu €
B®(s,7(1)), then for an edgew, the probability thatu belongs to a different component tharis at most
681log? n/R.

Proof: We define a center € S as “separating’ andv if ]Bﬁt) N{u,v}| = 1. Clearly, ifu, v lie in different
components then there is some [T and some center that separates them. For a center S®), this can
happen only ifd; = R — dist(s,u), sincedist(s,v) < dist(s,u) — 1. As there areR possible values of;,
this event occurs with probability at mostR. And since there are oni§8log? n different centers; that can
possibly cut the edge, using a trivial union bound over thérasgus an upper bound 68log?n/R on the
probability. |

To argue about (P3), notice that the premise to Lerdnidolds with probability exceeding — o(1) >
3/4. Combining this with Lemma.4 proves property (P3), where the technical condition is treenise to
Lemma4.7.

Finally, we consider the work and depth of the algorithm. Séhare randomized bounds. Each computation
of B®(v,r®) can be done using a BFS. Sincé < p, the depth is bounded b9 (plogn) per iteration,
resulting inO(plog® n) afterT = O(logn) iterations. As for work, by Lemmad.4, each vertex is reached by
at mostO(log? n) starting points, yielding a total work @ (m log? n).



4.2 Low-Diameter Decomposition for Multiple Edge Classes

Extending the basic algorithm to support multiple edgesgass straightforward. The main idea is as follows.
Suppose we are given a unweighted gréph= (V, E'), and the edge sdt is composed ok edge classes
Eyw---W E;. So, if we runsplitGraph on G = (V, E) andp treating the different classes as one, then
property (P3) indicates that each edge—regardless of wdlads it came from—is separated (i.e., it goes
across components) with probabilipy= %6 log® n. This allows us to prove the following corollary, which
follows directly from Markov’s inequality and the union bas.

Corollary 4.8 With probability at leastl /4, for all i« € [k], the number of edges i; that are between
components is at mo*gEﬂ%.

The corollary suggests a simple way to ugd itGraph to provide guarantees required by Theorérh
as summarized in Algorithm.2, we runsplitGraph on the input graph treating all edge classes as one and
repeat it if any of the edge classes had too many edges cutniioge than|Ei|m). As the corollary
indicates, the number of trials is a geometric random véiabth with p = 1/4, so in expectation, it will
finish after4 trials. Furthermore, although it could go on forever in therst case, the probability does fall
exponentially fast.

Algorithm 4.2 Partition (G = (V,E = Ey W --- W E}), p) — Partition an input graplt into components
of radius at mosp.

1. LetC = splitGraph((V,WE;), p).

2. Ifthere is some such thatr; has more thah®;|
thatk was the number of edge classes.)

ReturnC.

) 3
W edges between components, start over. (Recall

Finally, we note that properties (P1) and (P2) directly giteeorem4.1(1)—(2)—and the validation step
in Partition ensures Theorer.1(3), settingc; = 272. The work and depth bounds feartition follow
from the bounds derived farplitGraph and Corollary4.8. This concludes the proof of Theorefrl

5 Parallel Low-Stretch Spanning Trees and Subgraphs

This section presents parallel algorithms for low-strefghnning trees and for low-stretch spanning subgraphs.
To obtain the low-stretch spanning tree algorithm, we apipdyconstruction of Alon et alAKPW95] (hence-
forth, the AKPW construction), together with the paralleqygh partition algorithm from the previous section.
The resulting procedure, however, is not ideal for two reasahe depth of the algorithm depends on the
“spread” A—the ratio between the heaviest edge and the lightest edge-exgen for polynomial spread, both
the depth and the average stretch are super-logarithmtb @achem have @°(vlesnloglogn) tarm). Fortu-
nately, for our application, we observe that we do not neatsing trees but merely low-stretch sparse graphs.
In Section5.2, we describe modifications to this construction to obtairaealtel algorithm which computes
sparse subgraphs that give us only polylogarithmic avestrgech and that can be computed in polylogarithmic
depth anoﬁ(m) work. We believe that this construction may be of indepehdsarest.



5.1 Low-Stretch Spanning Trees

Using the AKPW construction, along with tleertition procedure from Sectiofi, we will prove the follow-
ing theorem:

Theorem 5.1 (Low-Stretch Spanning Tree)There is an algorithmikPwW(G) which given as input a graph
G = (V, E,w), produces a spanning tree {ii(log®!) n, . 20(VIgnloglogn) |5 A) expected depth an@(m)
expected work such that the total stretch of all edges is tedtbyrmn - 20(viognloglogn),

Algorithm 5.1 AKPW (G = (V, E,w)) — a low-stretch spanning tree construction.
i. Normalize the edges so thatin{w(e) : e € E} = 1.
ii. Lety =2v0lentoeloen + — [3]og(n)/logy], z = 4eryt log® n. Initialize T = (.
iii. Divide Einto By, Fs,...,whereE; = {e € E | w(e) € [271,21)}.
Let EV) = E andE™" = E; for all i.

iv. Forj =1,2,...,until the graph is exhausted,

1. (Cy,C,...,C,) = Partition((VV) W, EY)), z/4)

2. Add a BFS tree of each componenfito

3. Define grapl{V’ U+ EG+1) by contracting all edges within the components and remoaiigglf-loops (but

maintaining parallel edges). Crea‘f]é'+1) from EZ.(j) taking into account the contractions.

v. Outputthe treq".

Presented in Algorithrb.1is a restatement of the AKPW algorithm, except that here vileige our parallel
low-diameter decomposition for the partition step. In vsrderation;j of Algorithm 5.1 looks at a graph
(V(j), E(j)) which is a minor of the original graph (because componentg wentracted in previous iterations,
and because it only considers the edges in thejfigtight classes). It us@artition((V,W;<F;),2/4) to
decompose this graph into components such that the hopsredétt most /4 and each weight class has only
1/y fraction of its edges crossing between components. (P&easnez are defined in the algorithm and are
slightly different from the original settings in the AKPWgalrithm.) It then shrinks each of the components
into a single node (while adding a BFS tree on that comporeh),tand iterates on this graph. Adding these
BFS trees maintains the invariant that the set of originalesavhich have been contracted into a (super-)node
in the current graph are connected/inhence, when the algorithm stops, we have a spanning trée ofiginal
graph—hopefully of low total stretch.

We begin the analysis of the total stretch and running timprbying two useful facts:

Fact 5.2 The number of edge}Ei(j)| is at most E; | /37 .

Proof: If we could ensure that the number of weight classes in plangttime is at most, the number of

edges in each class would fall by at least a factoﬂé% = 1/y by Theorem4.1(3) and the definition

of z, and this would prove the fact. Now, for the firsiiterations, the number of weight classes is at most
just because we consider only the fifsiveight classes in iteration Now in iterationT + 1, the number of

surviving edges of7; would fall to |Ey|/y™ < |E1|/n® < 1, and hence there would only beweight classes

left. It is easy to see that this invariant can be maintained the course of the algorithm. |

Fact 5.3 In iteration j, the radius of a component according to edge weights (inxpamded-out graph) is at
mostz/ 1,
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Proof: The proof is by induction orj. First, note that by Theorer.1(2), each of the clusters computed in
any iterationj has edge-count radius at magtt. Now the base casg= 1 follows by noting that each edge

in B, has weight less than, giving a radius of at most? /4 < z/*1. Now assume inductively that the radius
in iterationj — 1 is at mostz/. Now any path with: /4 edges from the center to some node in the contracted
graph will pass through at mosf4 edges of weight at most, and at most /4 + 1 supernodes, each of which
adds a distance @/; hence, the new radius is at madt! /4 + (z/4 +1)2z/ < z/*laslongas >8. W

Applying these facts, we bound the total stretch of an edasgscl
Lemma 5.4 For anyi > 1, strp(E;) < 4y?| Ey|(4ci7log3 )™+,

Proof: Lete be an edge iF; contracted during iteration Sincee € E;, we knoww(e) > zi~!. By Fact5.3,
the path connecting the two endpointsedh F' has distance at mo8t/*!. Thus,strr(e) < 22711 /271 =

22/=*2, Fact5.2indicates that the number of such edges is at r‘p‘ﬁ@ﬂ < |E;|/3’~*. We conclude that

i+7—1

strp(By) < ) 220 2By
j 'l

< 4y2]Ei](4clTlog3 n)TJr1

Proof: [of Theorem5.1] Summing across the edge classes gives the promised bouwsitetoch. Now there are
[log, A] weight classed’;’s in all, and since each time the number of edges in a (nori@mfass drops by a
factor ofy, the algorithm has at moét(log A + 7) iterations. By Theorem.1and standard techniques, each it-
eration doe®) (1 log? n) work and ha®) (= log? n) = O(log®™) n.20(Vlognloglogn)) depth in expectatioril

5.2 Low-Stretch Spanning Subgraphs

We now show how to alter the parallel low-stretch spanniag ttonstruction from the preceding section to give
a low-stretch spanningubgraphconstruction that has no dependence on the “spread,” aneowver has only
polylogarithmic stretch. This comes at the cost of obtajrarsparse subgraph with— 1 + O(m/ polylog n)
edges instead of a tree, but suffices for our solver apphicail he two main ideas behind these improvements
are the following: Firstly, the number of surviving edge®ach weight class decreases by a logarithmic factor
in each iteration; hence, we could throw in all surviving eslgfter they have been whittled down in a constant
number of iterations—this removes the factor6f viesnloglogn)from hoth the average stretch and the depth.
Secondly, ifA is large, we will identify certain weight-classes withm/ polylog n) edges, which by setting
them aside, will allow us to break up the chain of dependesramiel obtairO(polylog n) depth; these edges will
be thrown back into the final solution, addiggm/ polylog n) extra edges (which we can tolerate) without
increasing the average stretch.

5.2.1 The First Improvement

Let us first show how to achieve polylogarithmic stretch vathultra-sparse subgraph. Given paramelees
Z-oandp > c; log® n (wherec, = 2- (de (A +1))2A~1), we obtain the new algorithiSparseAKPW(G, A, )
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by modifying Algorithm5.1 as follows:
(1) use the altered parameters- - 3/log” n andz = 4ciy(A + 1) log® n;

EY

(2) ineachiteratior, callPartitionwith at most\+1 edge classes—keep th@lassesEj(.j ), EY A

FCTRR
but then define a “generic buckaE‘(” =U -,<j_AE(.?) as the last part of the partition; and

(3) finally, output not just the tre& but the subgraph? TU (UZ>1E(’“))

Lemma 5.5 Given a graph, parameters\ € Z- andj3 > ¢ log® n (Wherecy = 2- (4c1(>\+ 1)) A=1) the
algorithmSparseAKPW(G, A, 3) outputs a subgraph @ with at most,—1-+m(cz(log® n/3))* edges and total
stretch at mostn,32 log* 3 n. Moreover, the expected workdm ) and expected depth@((c; 3/c2) A log? n(log A+

log n)).

Proof: The proof parallels that for Theorefl Fact5.3remains unchanged. The claim from Fact now
remains true only foy € {i,...,i + A — 1}, after that the edges iEi(j) become part oE(j), and we only
give a cumulative guarantee on the generic bucket. But thés d¢hurt us: ife € E; is contracted in iteration
j <i+X—1(ie., itlies within a component formed in iteratigh, thenstrs(e) < 2272, And the edges
of E; that survive till iterationj > i + A have stretch because they are eventually all added:tohence we
do not have to worry that they belong to the clﬁé,%) for those iterations. Thus,

i+A—1
stra(B) < > 272 ||y < 42 (G B,
Jj=t y

Summing across the edge classes gites(£) < 49 ( )*~1m, which simplifies toO(m/321og* *3 n).
Next, the number of edges in the output follows directly frﬂma factT” can have at most — 1 edges, and the
number of extra edges from each class is only@" fraction (i.e.,\Ef“U < |E;|/y from Fact5.2). Finally,
the work remains the same; for each of thez A + 7) distance scales the depth is séill z log® n), but the

new value ofz causes this to becon®@((c; 3/c2) A log? n). |

5.2.2 The Second Improvement

The depth of theSparseAKPW algorithm still depends otbg A, and the reason is straightforward: the graph
GU) used in iteratiory is built by takingG") and contracting edges in each iteration—hence, it depemdd o
previous iterations. However, the crucial observatiorma tf we hadr consecutive weight classég’s which
are empty, we could break this chain of dependencies at tiig. pHowever, there may be no empty weight
classes; but having weight classes with relatively few sdgenough, as we show next.

Fact 5.6 Given agraphz = (V, £) and a subset of edgés C £, let G' =G\Fbea potentially disconnected
graph. IfG" is a subgraph o’ with total stretchstr 5, (E(G')) < D, then the total stretch df onG := G'UF
isatmostF| + D.

Consider a grapli: = (V, E, w) with edge weightsv(e) > 1, and letE;(G) := {e € E(G) | w(e) €
[2¢=1, 2%)} be the weight classes. Thef,is called(, 7)-well-spacedf there is a set o§pecialweight classes
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{E;(G)}ier such that for each € I, (a) there are at mostweight classes before the following special weight
classmin{i’ € I U {oo} | i’ > i}, and (b) ther weight classed’;_1(G), E;—2(G), ..., E;—-(G) preceding
are all empty.

Lemma 5.7 Given any graphz = (V, E), 7 € Zy, andf < 1, there exists a grapli”’ = (V, E’) which is
(47/6, 7)-well-spaced, andE’ \ E| < 6 - |E|. Moreover,G’ can be constructed i (m) work andO(log n)
depth.

Proof. Letd = lf:)ggf; note that the edge classes @areF1, .. ., E5, some of which may be empty. Denote by

E; the unionU;c ; E;. We constructy’ as follows: Divide these edge classes into disjoint gralipsh, ... C
[0], where each group consists [pf /] consecutive classes. Within a group by an averaging argument,
there must be a rangle; C J; of 7 consecutiveedge classes that contains at mo8tfeaction of all the edges

in this group, i.e.|Er,| < 60 -|E;| and|L;| > 7. We formG’ by removing these the edges in all these groups

Ly’sfromG,i.e.,G' = (V,E\ (U;EL,)). This removes only & fraction of all the edges of the graph.

We claimG is (47/6, T)-well-spaced. Indeed, if we remove the gralp then we designate the smallest
J € [0] such thay > max{j" € L;} as a special bucket (if suchjaxists). Since we removed the edge€in,
the second condition for being well-spaced follows. Moegpthe number of buckets between a special bucket
and the following one is at most
2[7/0] — (1 —1) <471/6.

Finally, these computations can be don&ifm) work andO(log n) depth using standard techniqud&J92
Lei92. |

Lemma5.8 Let7 = 3logn/logy. Given a graphG which is (v, 7)-well-spaced SparseAKPW can be com-
puted onG' with O(m) work andO (£S5 1og® n) depth.

Proof: SinceG is (v, 7)-well-spaced, each special bucket I must be preceded byempty buckets. Hence,
in iteration: of SparseAKPW, any surviving edges belong to buckdis . or smaller. However, these edges
have been reduced by a factoryoin each iteration and since > log, n?, all the edges have been contracted

in previous iterations—i.eEéi) for ¢ < iis empty.

Consider any special buckétwe claim that we can construct the vertex B&t thatSparseAKPW sees at
the beginning of iteration, without having to run the previous iterations. Indeed, &g just take the MST
on the entire graply = G, retain only the edges from buckels_, and lower, and contract the connected
components of this forest to gét?). And once we know this vertex sét), we can drop out the edges from
E; and higher buckets which have been contracted (these arseaiblwops), and execute iterationg + 1, . . .
of SparseAKPW without waiting for the preceding iterations to finish. Mover, given the MST, all this can be
done inO(m) work andO(log n) depth.

Finally, for each special bucketn parallel, we start runningparseAKPW at iterationi. Since there are at
mostr iterations until the next special bucket, the total deptbnly O(yzlog?n) = O(i—;fy)\ﬁ log®n). |

Theorem 5.9 (Low-Stretch Subgraphs)Given a weighted grapl, A\ € Z-o, and 8 > ¢y log® n (where
o =2 (et (M + 1))2D), there is an algorithnLSSubgraph(G, 8, \) that finds a subgrapky such that

~ : A
L |BG) <n—1+m (cleogﬁ’")
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2. The total stretch (of alE2() edges) in the subgrap is at most byn 32 log**% n,

wherec s (= c2+ 1) is a constant. Moreover, the procedure runsﬁ(m) work andO(AB* 1 log®~3* n) depth.
If A\ = O(1) and 3 = polylog(n), the depth term simplifies 10(log® ") n).

Proof: Given a graph’, we setr = 3logn/logy andd = (log®n/B)*, and apply Lemm&.7 to delete at
mostém edges, and get@r /6, 7)-well-spaced grapli”’. Letm’ = |E’|. On this graph, we ruparseAKPW
to obtain a graplé?’ with n.— 1 +m/(c2(log® n/3))* edges and total stretch at mast32 log®+2 n; moreover,
Lemmab5.8 shows this can be computed with(mm) work and the depth is

c

0, (—1(47/9»5 log? n> = O\ M 1og® 3 n).
2

C

Finally, we output the grapty = G’ U (E(G) \ E(G")); this gives the desired bounds on stretch and the
number of edges as implied by F&cé and Lemméb.5. |

6 Parallel SDD Solver

In this section, we derive a parallel solver for symmetragdinally dominant (SDD) linear systems, using the
ingredients developed in the previous sections. The sdblews closely the line of work of $T03 STOG
KMO07, KMP1Q]. Specifically, we will derive a proof for the main theoremh@orem1.1), the statement of
which is reproduced below.

Theorem 1.1 For any fixed? > 0 and anys > 0, there is an algorithnSDDSolve that on input
an SDD matrixA and a vectoh computes a vectaf such that|z — ATb||4 < e - [|[ATD||4 in
O(m1og®M nlog 1) work andO(m!/3+%1og 1) depth.

In proving this theorem, we will focus on Laplacian lineastgms. As noted earlier, linear systems on SDD
matrices are reducible to systems on graph Laplacianiiog(m + n)) depth andD(m + n) work [Gre94.
Furthermore, because of the one-to-one correspondensedregraphs and their Laplacians, we will use the
two terms interchangeably.

The core of the near-linear time Laplacian solversSm(3 ST06 KMP1(Q] is a “preconditioning” chain of
progressively smaller graphisl; = A, Ao, ..., Ay), along with a well-understood recursive algorithm, known
as recursive preconditioned Chebyshev methedek, that traverses the levels of the chain and for each visit
at leveli < d, performsO(1) matrix-vector multiplications withl; and other simple vector-vector operations.
Each time the algorithm reaches levklit solves a linear system oA, using a direct method. Except for
solving the bottom-level systems, all these operationsbeaaccomplished in linear work adé(log(m + n))
depth. The recursion itself is based on a simple schemeaftr @sit at level the algorithm makes at mosf
recursive calls to level+ 1, wherex! > 2 is a fixed system-independent integer. Therefore, assuwertzave
computed a chain of preconditioners, the total requiredhdisg(up to a log) equal to the total number of times
the algorithm reaches the last (and smallest) lelgl
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6.1 Parallel Construction of Solver Chain

The construction of the preconditioning chain KMP10Q] relies on a subroutine that on input a gragh
constructs a slightly sparser graphwhich is spectrally related td;. This “incremental sparsification” routine

is in turn based on the computation of a low-stretch tree4ar The parallelization of the low-stretch tree
is actually the main obstacle in parallelizing the wholeveolpresented inKMP10]. Crucial to effectively
applying our result in Sectiohis a simple observation that the sparsification routind®P10] only requires a
low-stretch spanning subgraph rather than a tree. Theh tmeétexception of some parameters in its construction,
the preconditioning chain remains essentially the same.

The following lemma is immediate from Section 6 &fIP10].

Lemma 6.1 Given a graphG; and a subgrapr@ of G such that the total stretch of all edgesGhwith respect
to G'ism - S, a parameter on condition number and a success probability— 1/¢&, there is an algorithm that
constructs a graph such that

1. GXH<k-G, and
2. |E(H)| = |[E(G)| + (s - Slognlog€)/k

in O(log® n) depth andD (m log? n) work, wherers is an absolute constant.

Although Lemma6.1 was originally stated withz being a spanning tree, the proof in fact works without
changes for an arbitrary subgraph. For our purpogdsas to be at mosD(logn) and that introduces an
additionalO(log log n) term. For simplicity, in the rest of the section, we will cales this as an extrioogn
factor.

Lemma 6.2 Given a weighted grapli-, parameters\ and n such thatp > A > 16, we can construct in
O(log? n) depth andD(m) work another graph such that

1. G=2H=% logMn-G
2. |[E(H)| <n—1+m-cpc/log™ 2174 (n),

wherecpc is an absolute constant.

Proof: LetG = LSSubgraph(G, A, log” n). Then, Theorens.9shows thatE(G)| is at most

as-log®n A
Ls-
n—1+m<T> :n_1+m<log’73 >

Furthermore, the total stretch of all edgesdrwith respect ta’s is at most
S = m52 log)\+3 n < m10g217+3)\+3 n

Applying Lemma6.1with = -5 log" n givesH such thatG < H =< Llog" n - G and|E(H)| is at most

n—1+m- Cﬁs n 10 - c|510g2n+3>\+5 n
IOg)\(n_S) n log”)‘ n
CpC
< n—1l+m-
logM—2A=3k=5
CcpC
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We now give a more precise definition of the preconditionihgic we use for the parallel solver by giving
the pseudocode for constructing it.

Definition 6.3 (Preconditioning Chain) Consider a chain of graphs
C=(A1=A,B1,Ay, ..., Ag),

and denote by:; andm; the number of nodes and edgesAfrespectively. We say thétis preconditioning
chainfor A if

1. B; = IncrementalSparsify(4;).
2. A;41 = GreedyElimination(B;).
3. A; X B; < 1/10 - k;A;, for some explicitly known integer;. 7

As noted above, thePCh algorithm relies on finding the solution of linear systemsfpthe bottom-level
systems. To parallelize these solves, we make use of tloevioly fact which can be found in Sections 3.4. and
4.2 of [GVL96].

Fact 6.4 A factorizationLL" of the pseudo-inverse of anby-n Laplacian A, whereL is a lower triangular
matrix, can be computed i (n) time andO(n?) work, and any solves thereafter can be don®itog n) time
andO(n?) work.

Note that although is not positive definite, its null space is the space spangéleall1s vector when the
underlying graph is connected. Therefore, we can in turp the first row and column to obtain a semi-definite
matrix on which LU factorization is numerically stable.

The routineGreedyElimination is a partial Cholesky factorization (for details s&IDg or [KMP1Q])
on vertices of degree at madt From a graph-theoretic point of view, the routiGecedyElimination can
be viewed as simply recursively removing nodes of degreeamukesplicing out nodes of degree two. The
sequential version direedyElimination returns a graph with no degréeor 2 nodes. The parallel version
that we present below leaves some de@emdes in the graph, but their number will be small enough to no
affect the complexity.

Lemma 6.5 If G hasn vertices anch — 1 + m edges, then the proceduteeedyElimination(G) returns a
graph with at mos2m — 2 nodes inO(n + m) work andO(log n) depthwhp.

Proof: The sequential version d@freedyElimination(G) is equivalent to repeatedly removing degree
vertices and splicing o vertices until no more exist while maintaining self-loopsdanultiple edges (see,
e.g., BT03 ST0Q and [KouQ7, Section 2.3.4]). Thus, the problem is a slight generabrnabdf parallel tree
contraction MR89]. In the parallel version, we show that while the graph hasanban2m — 2 nodes, we
can efficiently find and eliminate a “large” independent dadegree two nodes, in addition to all degree one
vertices.

We alternate between two steps, which are equivaleRtke andCompress in [MR89], until the vertex
count is at mosem — 2:
Mark an independent set of degree 2 vertices, then

"The constant of /10 in the condition number is introduced only to simplify sufpsent notation.
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1. Contract all degreé vertices, and
2. Compress and/or contract out the marked vertices.

To find the independent set, we use a randomized markingi@goon the degree two vertices (this is used
in place of maximal independent set for work efficiency): liedegree two node flips a coin with probabili%y
of turning up heads; we mark a node if it is a heads and its beigheither did not flip a coin or flipped a tail.

We show that the two steps above will remove a constant fract “extra” vertices. LetG is a multigraph
with n vertices andn+n—1 edges. First, observe that if all vertices have degree sttileigee them < 2(m—1)
and we would be finished. So, létbe any fixed spanning tree 6f, let a; (resp.as) be the number of vertices
in T of degree one (resp. two) and the number those of degree three or more. Similarlyy,lebs, andbs be
the number vertices it/ of degreel, 2, and at leass, respectively, where the degree is the vertex’'s degree in

G.

Itis easy to check that in expectation, these two steps relnew%bQ >b +%bg vertices. In the following,
we will show thatb; + by > 1An, whereAn = n — (2m — 2) = n — 2m + 2 denotes the number of “extra”
vertices in the graph. Consider non-tree edges and how teett@ached to the trég. Letm,, ms, andms be
the number of attachment of the following types, respeltive

(1) an attachment to, a degree 1 vertex i, wherex has at least one other attachment.
(2) an attachment to, a degree 1 vertex ift, wherex has no other attachment.
(3) an attachment to a degr2eertex in7'.

As each edge is incident on two endpoints, we hayet+ ms + m3z < 2m. Also, we can lower bounék
andb, in terms ofm;’s anda;’s: we haveb; > a1 — my/2 — mg andbs > mg + as — ms. This gives

by + %bQ > %(al —m1/2 —mg) + %(mz +as — mg)
= %al + %ag — %(ml -+ mo +m3)
> fan + bas — b

Consequentlyb; + 1by > 1(2a; + az — 2m) > 1 - An, where to show the last step, it suffices to show that
n+2 < 2a; + as for atreel” of n nodes. WLOG, we may assume that all node$' biave degree either one or
three, in which casea; = n + 2. Finally, by Chernoff bounds, the algorithm will finish witiigh probability

in O(log n) rounds. [

6.2 Parallel Performance of Solver Chain

Spielman and TendgJT06 Section 5] gave a (sequential) time bound for solving aalireDD system given a
preconditioner chain. The following lemma extends theiediem 5.5 to give parallel runtime bounds (work
and depth), as a function ef’s andm;’s. We note that in the bounds below, thx% term arises from the dense
inverse used to solve the linear system in the bottom level.

Lemma 6.6 There is an algorithm that given a preconditioner chélin= (A; = A, A, ..., Ay) for a matrix
A, avectorb, and an error tolerance, computes a vectar such that

12 — ATblla < e [[ATD] .,
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with depth bounded by

( > 11 ﬁ) lognlog(l) < o(( 1T m) 1ognlog(g)>

1<i<d 1<j<i 1<j<d

and work bounded by

Z mZH\/E—i—mi H VEj log(%).

1<i<d—1 j<i 1<j<d

To reason about Lemna6, we will rely on the following lemma about preconditionedeblyshev iteration
and the recursive solves that happen at each level of tha.clidis lemma is a restatement of Spielman and
Teng’s Lemma 5.3 (slightly modified so that thés; does not involve a constant, which shows up instead as
constant in the preconditioner chain’s definition).

Lemma 6.7 Given a preconditioner chain of length it is possible to construct linear operatosslve 4, for
all = < d such that

(1 —e A < solves, < (1+¢€?)
andsolve 4, is a polynomial of degreg/x; involvingsolve 4
GreedyElimination).

.+1 and 4 matrices withm; non-zero entries (from

Armed with this, we state and prove the following lemma:
Lemma 6.8 For ¢ > 1, given any vectob, the vectorsolve4, - b can be computed in depth
logn Z H VFj
0<i<d 0<j<i

and work

>oomie I vEi+mi I v

1<i<d—1 0<j<i (<j<d

Proof: The proof is by induction in decreasing order&©n/Nhend = ¢, all we are doing is a matrix multipli-
cation with a dense inverse. This takeglog n) depth and)(m?) work.

Suppose the result is true fér- 1. Then sincesolve 4, can be expressed as a polynomial of degyee
involving an operator that iolve 4, , multiplied by at mostt matrices withO(m,) non-zero entries. We have
that the total depth is

log ny/k¢ + /K¢ - | logn Z H NG

(H1<i<d I+1<j<i

zlognz H\/E

(<i<d 0<j<i

and the total work is bounded by

(+1<i<d—1 1+1<5<i 1+1<j5<d
§ 2
1<i<d—1 1<5<i 1<j<d
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Proof: [of Lemma6.6] Thes-accuracy bound follows from applying preconditioned Glstiev tosolve 4, sim-
ilarly to Spielman and Teng’s Theorem 5357106, and the running time bounds follow from Lemra&when
(=1. [

6.3 Optimizing the Chain for Depth

Lemma6.6 shows that the algorithm’s performance is determined byétings ofk;'s andm;’s; however, as
we will be using Lemm&.2, the number of edges; is essentially dictated by our choicef We now show
that if we terminate chain earlier, i.e. adjusting the disien A, to rougthO(m1/3 loge~1), we can obtain
good parallel performance. As a first attempt, we willisgt uniformly:

Lemma 6.9 For any fixedd > 0, if we construct a preconditioner chain using Lemfa setting A to some
proper constant greater than 24,= \ and extending the sequence umtil, < m'/3~9 for somes depending
on \, we get a solver algorithm that runs i@ (m'/3+?log(1/¢)) depth andO(mlog 1/¢) work asA — oo,
wheree is the accuracy precision of the solution, as defined in theestent of Theorerh. L

Proof: By Lemma6.1, we have thain; . ;—the number of edges in leveh- 1—is bounded by

cpc O(m; - —CPC
(]

nA—2n—4A ) = (A—6) )’

log

. log?

which can be repeatedly apply to give

i—1
CpC
. < o —_—
mi < m (h)gk(k_ﬁ)n)

Therefore, when\ > 12, we have that for each< d,
i—1 [
CpC
mi'H\//{(nj) <m- (W) : <\/10gA2n>

J<t
( ) ) CpC ‘
log)\()\—12)/2 n

(m)

Il
Qr

IN
O

Now consider the term involving:4. We have thatl is bounded by

2 1
(— + 5) log m/ log (— log n**=9)).
3 cpC
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Combining with thex; = log*” n, we get

)\2/2) (%-{—6) log m/ log (clog n*(*=6))

= (log n

A2 2 log m
= loglogn—(= + 4
P < 0810817 (3 + ))\()\ —6)loglogn — 10g0pc>

A2 2 log m
< exp (loglog n (2
= eXp<°g ogn (3 +5)/\(/\—7)loglogn>

(sincelogcpc > —logn)

Sincemy = O(mé“s), the total work is bounded by

O(m G+ +E-20) _ o1+ 057

So, settingg > ' suffices to bound the total work by (m). And, whend is set tox—;, the total parallel
running time is bounded by the number of times the last lay/ealled

[T /() < O(m!s o))
J

1 7 A
< O(m§+ =11 T I =) )

7 7
+A714+>\714)

Wl

< O(m

1, 14
< O(m373T1)  when\ > 21

Setting\ arbitrarily large suffices to give (m!/?+?) depth. [ |

To match the promised bounds in Theorérh, we improve the performance by reducing the exponent on
thelogn term in the total work from\? to some large fixed constant while letting total depth spib@ach
O(m1/3+9).

Proof: [of Theoreml.1] Consider settingh = 13 andn > A. Then,

17/\—277—4)\277()\—6)21—277/\

We usec, to denote this constant q% namelyc, satisfies

cpc/ log=2n=4A p < cpc/ log™™ n

We can then pick a constant threshadlénd sets; for all i < L as follows:

2 i—1y2
(2ca)A 2¢4) A n

K1 = log)‘2 n, kg = log Ny Ky = log(
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To solve Ay, we apply Lemmd.9, which is analogous to setting;, . . . , Az uniformly. The depth required in
constructing these preconditioneri¢m,, + Zf:1(2C4)j—1/\2), plusO(mg) for computing the inverse at the

last level—for a total 0P (1m,) = O(m'/3).

As for work, the total work is bounded by

>omi [T ve+ II vami

i<d  1<j<i 1<j<d

=2 mi 1 vmi

i<l 1<j<i

| I v | \vaom II ve+mi I v

1<j<L 2L L<j<i L<j<d

<> mi [ vei+| Il v& | mever

i<l  1<j<i 1<j<L

=2 mi I vA

<L 1<5<i

S 1L v

i< +i<t Fi 1<j<i
H 204
vk 2<j<i j 1
=m).
i<L H]<ZK’Z

= mLy/k1

The first inequality follows from the fact that the exponehiag™ in 1, can be arbitrarily large, and then
applying Lemma5.9to the solves after levdl. The fact thatn,;+1 < m; - O(1/x;*) follows from Lemma6.2

Since L is a constant]],,, € O(polylogn), so the total depth is still bounded I8y(m'/*+?) by
Lemmas.9. o [ |

7 Conclusion

We presented a near linear-work parallel algorithm for toiesing graph decompositions with strong-diameter
guarantees and parallel algorithms for constructifig/’smIoglogn)_stretch spanning trees ant{log®") n)-
stretch ultra-sparse subgraphs. The ultra-sparse suisymgre shown to be useful in the design of a near
linear-work parallel SDD solver. By plugging our resultdnprevious frameworks, we obtained improved
parallel algorithms for several problems on graphs.

We leave open the design of a (near) linear-work parallebrétgm for the construction of a low-stretch
tree with polylogarithmic stretch. We also feel that theiglef (near) Work—efficienO(logO(l) n)-depth SDD
solver is a very interesting problem that will probably rieguhe development of new techniques.
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