
ar
X

iv
:1

11
1.

17
50

v1
 [

cs
.D

S
]

7
N

ov
 2

01
1

Near Linear-Work Parallel SDD Solvers, Low-Diameter
Decomposition, and Low-Stretch Subgraphs∗

Guy E. Blelloch Anupam Gupta Ioannis Koutis† Gary L. Miller
Richard Peng Kanat Tangwongsan

Carnegie Mellon University and†University of Puerto Rico, Rio Piedras

Abstract

We present the design and analysis of a near linear-work parallel algorithm for solving symmetric diag-
onally dominant (SDD) linear systems. On input of a SDDn-by-n matrixA with m non-zero entries and a
vectorb, our algorithm computes a vectorx̃ such that‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε)

work andO(m1/3+θ log 1
ε) depth for any fixedθ > 0.

The algorithm relies on a parallel algorithm for generatinglow-stretch spanning trees or spanning sub-
graphs. To this end, we first develop a parallel decomposition algorithm that in polylogarithmic depth and
Õ(|E|) work1, partitions a graph into components with polylogarithmic diameter such that only a small frac-
tion of the original edges are between the components. This can be used to generate low-stretch spanning
trees with average stretchO(nα) in O(n1+α) work andO(nα) depth. Alternatively, it can be used to gen-
erate spanning subgraphs with polylogarithmic average stretch inÕ(|E|) work and polylogarithmic depth.
We apply this subgraph construction to derive a parallel linear system solver. By using this solver in known
applications, our results imply improved parallel randomized algorithms for several problems, including
single-source shortest paths, maximum flow, minimum-cost flow, and approximate maximum flow.

1 Introduction

Solving a system of linear equationsAx = b is a fundamental computing primitive that lies at the core ofmany
numerical and scientific computing algorithms, including the popular interior-point algorithms. The special case
of symmetric diagonally dominant (SDD) systems has seen substantial progress in recent years; in particular,
the ground-breaking work of Spielman and Teng showed how to solve SDD systems to accuracyε in time
Õ(m log(1ε)), wherem is the number of non-zeros in then-by-n-matrixA.2 This is algorithmically significant
since solving SDD systems has implications to computing eigenvectors, solving flow problems, finding graph
sparsifiers, and problems in vision and graphics (see [Spi10, Ten10] for these and other applications).

In the sequential setting, the current best SDD solvers run inO(m log n(log log n)2 log(1ε)) time [KMP11].
However, with the exception of the special case of planar SDDsystems [KM07], we know of no previous

∗Contact Address: 5000 Forbes Ave. Computer Science Department. Pittsburgh, PA 15213. E-mail:{guyb, anupamg,

i.koutis, glmiller, yangp, ktangwon}@cs.cmu.edu.
1TheÕ(·) notion hides polylogarithmic factors.
2The Spielman-Teng solver and all subsequent improvements are randomized algorithms. As a consequence, all algorithmsrelying

on the solvers are also randomized. For simplicity, we omit standard complexity factors related to the probability of error.

1

http://arxiv.org/abs/1111.1750v1

parallel SDD solvers that perform near-linear3 work and achieve non-trivial parallelism. This raises a natural
question:Is it possible to solve an SDD linear system ino(n) depth andÕ(m) work? This work answers this
question affirmatively:

Theorem 1.1 For any fixedθ > 0 and anyε > 0, there is an algorithmSDDSolve that on input ann× n SDD
matrixA with m non-zero elements and a vectorb, computes a vector̃x such that‖x̃−A+b‖A ≤ ε · ‖A+b‖A
in O(m logO(1) n log 1

ε) work andO(m1/3+θ log 1
ε) depth.

In the process of developing this algorithm, we give parallel algorithms for constructing graph decompo-
sitions with strong-diameter guarantees, and parallel algorithms to construct low-stretch spanning trees and
low-stretch ultra-sparse subgraphs, which may be of independent interest. An overview of these algorithms and
their underlying techniques is given in Section3.

Some Applications. Let us mention some of the implications of Theorem1.1, obtained by plugging it into
known reductions.

— Construction of Spectral Sparsifiers.Spielman and Srivastava [SS08] showed that spectral sparsifiers can
be constructed usingO(log n) Laplacian solves, and using our theorem we get spectral and cut sparsifiers in
Õ(m1/3+θ) depth andÕ(m) work.

— Flow Problems.Daitsch and Spielman [DS08] showed that various graph optimization problems, such as
max-flow, min-cost flow, and lossy flow problems, can be reduced to Õ(m1/2) applications4 of SDD solves
via interior point methods described in [Ye97, Ren01, BV04]. Combining this with our main theorem implies
that these algorithms can be parallelized to run inÕ(m5/6+θ) depth andÕ(m3/2) work. This gives the first
parallel algorithm witho(n) depth which is work-efficient to withinpolylog(n) factors relative to the sequential
algorithm for all problems analyzed in [DS08]. In some sense, the parallel bounds are more interesting than
the sequential times because in many cases the results in [DS08] are not the best known sequentially (e.g.
max-flow)—but do lead to the best know parallel bounds for problems that have traditionally been hard to
parallelize. Finally, we note that although [DS08] does not explicitly analyze shortest path, their analysis
naturally generalizes the LP for it.

Our algorithm can also be applied in the inner loop of [CKM+10], yielding aÕ(m5/6+θpoly(ε−1)) depth
andÕ(m4/3poly(ε−1)) work algorithm for finding1− ε approximate maximum flows and1 + ε approximate
minimum cuts in undirected graphs.

2 Preliminaries and Notation

We use the notatioñO(f(n)) to meanO(f(n) polylog(f(n))). We useA⊎B to denote disjoint unions, and[k]
to denote the set{1, 2, . . . , k}. Given a graphG = (V,E), letdist(u, v) denote theedge-count distance(or hop
distance) betweenu andv, ignoring the edge lengths. When the graph has edge lengthsw(e) (also denoted by
we), let dG(u, v) denote theedge-length distance, the shortest path (according to these edge lengths) between
u andv. If the graph has unit edge lengths, the two definitions coincide. We drop subscripts when the context
is clear. We denote byV (G) andE(G), respectively, the set of nodes and the set of edges, and usen = |V (G)|

3i.e. linear up to polylog factors.
4hereÕ hideslogU factors as well, where it’s assumed that the edge weights areintegers in the range[1 . . . U]

2

andm = |E(G)|. For an edgee = {u, v}, the stretch ofe on G′ is strG′(e) = dG′(u, v)/w(e). The total
stretchof G = (V,E,w) with respect toG′ is strG′(E(G)) =

∑
e∈E(G) strG′(e).

GivenG = (V,E), a distance functionδ (which is eitherdist or d), and a partition ofV into C1 ⊎ C2 ⊎
. . . ⊎ Cp, let G[Ci] denote the induced subgraph on setCi. Theweak diameterof Ci is maxu,v∈Ci

δG(u, v),
whereas thestrong diameterof Ci is maxu,v∈Ci

δG[Ci](u, v); the former measures distances in the original
graph whereas the latter measures distances within the induced subgraph. The strong (or weak) diameter of the
partition is the maximum strong (or weak) diameter over all the componentsCi’s.

Graph Laplacians. For a fixed, but arbitrary, numbering of the nodes and edges ina graphG = (V,E), the
LaplacianLG of G is the|V |-by-|V | matrix given by

LG(i, j) =

{
−wij if i 6= j∑

{j,i}∈E(G)wij if i = j
,

When the context is clear, we useG andLG interchangeably. Given two graphsG andH and a scalarµ ∈ R,
we sayG � µH if µLH − LG is positive semidefinite, or equivalentlyx⊤LGx ≤ µx⊤LHx for all vector
x ∈ R

|V |.

Matrix Norms, SDD Matrices. For a matrixA, we denote byA+ the Moore-Penrose pseudoinverse ofA (i.e.,
A+ has the same null space asA and acts as the inverse ofA on its image). Given a symmetric positive semi-
definite matrixA, theA-normof a vectorx is defined as‖x‖A =

√
x⊤Ax. A matrixA is symmetric diagonally

dominant (SDD) if it is symmetric and for alli, Ai,i ≥
∑

j 6=i |Ai,j |. Solving an SDD system reduces inO(m)

work andO(logO(1)m) depth to solving a graph Laplacian (a subclass of SDD matrices corresponding to
undirected weighted graphs) [Gre96, Section 7.1].

Parallel Models. We analyze algorithms in the standard PRAM model, focusing on the work and depth param-
eters of the algorithms. Bywork, we mean the total operation count—and bydepth, we mean the longest chain
of dependencies (i.e., parallel time in PRAM).

Parallel Ball Growing. LetBG(s, r) denote the ball of edge-count distancer from a sources, i.e.,BG(s, r) =
{v ∈ V (G) : distG(s, v) ≤ r}. We rely on an elementary form of parallel breadth-first search to compute
BG(s, r). The algorithm visits the nodes level by level as they are encountered in the BFS order. More precisely,
level 0 contains only the source nodes, level 1 contains the neighbors ofs, and each subsequent leveli + 1
contains the neighbors of leveli’s nodes that have not shown up in a previous level. On standard parallel
models (e.g.,CRCW), this can be computed inO(r log n) depth andO(m′ + n′) work, wherem′ andn’ are
the total numbers of edges and nodes, respectively, encountered in the search [UY91, KS97]. Notice that we
could achieve this runtime bound with a variety of graph (matrix) representations, e.g., using the compressed
sparse-row (CSR) format. Our applications apply ball growing onr roughlyO(logO(1) n), resulting in a small
depth bound. We remark that the idea of small-radius parallel ball growing has previously been employed in
the context of approximate shortest paths (see, e.g., [UY91, KS97, Coh00]). There is an alternative approach
of repeatedly squaring a matrix, which can give a better depth bound for larger at the expenseof a much larger
work bound (aboutn3).

Finally, we state a tail bound which will be useful in our analysis. This bound is easily derived from
well-known facts about the tail of a hypergeometric random variable [Chv79, Hoe63, Ska09].

Lemma 2.1 (Hypergeometric Tail Bound) LetH be a hypergeometric random variable denoting the number
of red balls found in a sample ofn balls drawn from a total ofN balls of whichM are red. Then, ifµ =

3

E [H] = nM/N , then
Pr [H ≥ 2µ] ≤ e−µ/4

Proof: We apply the following theorem of Hoeffding [Chv79, Hoe63, Ska09]. For anyt > 0,

Pr [H ≥ µ+ tn] ≤
((p

p+ t

)p+t(1− p

1− p− t

)1−p−t
)n

,

wherep = µ/n. Usingt = p, we have

Pr [H ≥ 2µ] ≤
((p

2p

)2p(1− p

1− 2p

)1−2p
)n

≤
(
e−p ln 4

(
1 +

p

1− 2p

)1−2p
)n

≤
(
e−p ln 4 · ep

)n

≤ e−
1
4
pn,

where we have used the fact that1 + x ≤ exp(x). �

3 Overview of Our Techniques

In the general solver framework of Spielman and Teng [ST06, KMP10], near linear-time SDD solvers rely
on a suitable preconditioning chain of progressively smaller graphs. Assuming that we have an algorithm
for generating low-stretch spanning trees, the algorithm as given in [KMP10] parallelizes under the following
modifications: (i) perform the partial Cholesky factorization in parallel and (ii) terminate the preconditioning
chain with a graph that is of size approximatelym1/3. The details in Section6 are the primary motivation of
the main technical part of the work in this chapter, a parallel implementation of a modified version of Alon et
al.’s low-stretch spanning tree algorithm [AKPW95].

More specifically, as a first step, we find an algorithm to embeda graph into a spanning tree with aver-
age stretch2O(

√
logn log logn) in Õ(m) work andO(2O(

√
logn log logn) log ∆) depth, where∆ is the ratio of the

largest to smallest distance in the graph. The original AKPWalgorithm relies on a parallel graph decompo-
sition scheme of Awerbuch [Awe85], which takes an unweighted graph and breaks it into components with a
specified diameter and few crossing edges. While such schemes are known in the sequential setting, they do not
parallelize readily because removing edges belonging to one component might increase the diameter or even
disconnect subsequent components. We present the first nearlinear-work parallel decomposition algorithm that
also gives strong-diameter guarantees, in Section4, and the tree embedding results in Section5.1.

Ideally, we would have liked for our spanning trees to have a polylogarithmic stretch, computable by a poly-
logarithmic depth, near linear-work algorithm. However, for our solvers, we make the additional observation
that we do not really need a spanningtree with small stretch; it suffices to give an “ultra-sparse” graph with
small stretch, one that has onlyO(m/polylog(n)) edges more than a tree. Hence, we present a parallel algo-
rithm in Section5.2which outputs an ultra-sparse graph withO(polylog(n)) average stretch, performing̃O(m)
work withO(polylog(n)) depth. Note that this removes the dependence oflog∆ in the depth, and reduces both

4

the stretch and the depth from2O(
√
logn log logn) to O(polylog(n)).5 When combined with the aforementioned

routines for constructing a SDD solver presented in Section6, this low-stretch spanning subgraph construction
yields a parallel solver algorithm.

4 Parallel Low-Diameter Decomposition

In this section, we present a parallel algorithm for partitioning a graph into components with low (strong)
diameter while cutting only a few edges in each of thek disjoint subsets of the input edges. The sequential
version of this algorithm is at the heart of the low-stretch spanning tree algorithm of Alon, Karp, Peleg, and
West (AKPW) [AKPW95].

For context, notice that the outer layer of the AKPW algorithm (more details in Section5) can be viewed as
bucketing the input edges by weight, then partitioning and contracting them repeatedly. In this view, a number
of edge classes are “reduced” simultaneously in an iteration. Further, as we wish to output a spanning subtree
at the end, the components need to have low strong-diameter (i.e., one could not take “shortcuts” through other
components). In the sequential case, the strong-diameter property is met by removing components one after
another, but this process does not parallelize readily. Forthe parallel case, we guarantee this by growing balls
from multiple sites, with appropriate “jitters” that conceptually delay when these ball-growing processes start,
and assigning vertices to the first region that reaches them.These “jitters” terms are crucial in controlling the
probability that an edge goes across regions. But this probability also depends on the number of regions that
could reach such an edge. To keep this number small, we use a repeated sampling procedure motivated by
Cohen’s(β,W)-cover construction [Coh93].

More concretely, we prove the following theorem:

Theorem 4.1 (Parallel Low-Diameter Decomposition)Given an input graphG = (V,E1 ⊎ . . . ⊎ Ek) with
k edge classes and a “radius” parameterρ, the algorithmPartition(G, ρ), upon termination, outputs a
partition ofV into componentsC = (C1, C2, . . . , Cp), each with centersi such that

1. the centersi ∈ Ci for all i ∈ [p],

2. for eachi, everyu ∈ Ci satisfiesdistG[Ci](si, u) ≤ ρ, and

3. for all j = 1, . . . , k, the number of edges inEj that go between components is at most|Ej | · c1·k log3 n
ρ ,

wherec1 is an absolute constant.

Furthermore,Partition runs inO(m log2 n) expected work andO(ρ log2 n) expected depth.

4.1 Low-Diameter Decomposition for Simple Unweighted Graphs

To prove this theorem, we begin by presenting an algorithmsplitGraph that works with simple graphs with
only oneedge class and describe how to build on top of it an algorithm that handles multiple edge classes.

The basic algorithm takes as input a simple, unweighted graph G = (V,E) and a radius (in hop count)
parameterρ and outputs a partitionV into componentsC1, . . . , Cp, each with centersi, such that

5As an aside, this construction of low-stretch ultra-sparsegraphs shows how to obtain thẽO(m)-time linear system solver of
Spielman and Teng [ST06] without using their low-stretch spanning trees result [EEST05, ABN08].

5

(P1) Each center belongs to its own component. That is, the centersi ∈ Ci for all i ∈ [p];

(P2) Every component has radius at mostρ. That is, for eachi ∈ [p], everyu ∈ Ci satisfiesdistG[Ci](si, u) ≤
ρ;

(P3) Given a technical condition (to be specified) that holdswith probability at least3/4, the probability that
an edge of the graphG goes between components is at most136

ρ log3 n.

In addition, this algorithm runs inO(m log2 n) expected work andO(ρ log2 n) expected depth. (These proper-
ties should be compared with the guarantees in Theorem4.1.)

Consider the pseudocode of this basic algorithm in Algorithm 4.1. The algorithm takes as input an un-
weightedn-node graphG and proceeds inT = O(log n) iterations, with the eventual goal of outputting a
partition of the graphG into a collection of sets of nodes (each set of nodes is known as a component). Let
G(t) = (V (t), E(t)) denote the graph at the beginning of iterationt. Since this graph is unweighted, the distance
in this algorithm is always the hop-count distancedist(·, ·). For iterationt = 1, . . . , T , the algorithm picks a set
of starting centersS(t) to grow balls from; as with Cohen’s(β,W)-cover, the number of centers is progressively
larger with iterations, reminiscent of the doubling trick (though with more careful handling of the growth rate),
to compensate for the balls’ shrinking radius and to ensure that the graph is fully covered.

Still within iteration t, it chooses a random “jitter” valueδ(t)s ∈R {0, 1, . . . , R} for each of the centers

in S(t) and grows a ball from each centers out to radiusr(t) − δ
(t)
s , wherer(t) = ρ

2 logn(T − t + 1). Let

X(t) be the union of these balls (i.e., the nodes “seen” from thesestarting points). In this process, the “jitter”
should be thought of as a random amount by which we delay the ball-growing process on each center, so
that we could assign nodes to the first region that reaches them while being in control of the number of cross-
component edges. Equivalently, our algorithm forms the components by assigning each vertexu reachable from
one of these centers to the center that minimizesdistG(t)(u, s) + δ

(t)
s (ties broken in a consistent manner, e.g.,

lexicographically). Note that because of these “jitters,”some centers might not be assigned any vertex, not even
itself. For centers that are assigned some nodes, we includetheir components in the output, designating them as
the components’ centers. Finally, we constructG(t+1) by removing nodes that were “seen” in this iteration (i.e.,
the nodes inX(t))—because they are already part of one of the output components—and adjusting the edge set
accordingly.

Analysis. Throughout this analysis, we make reference to various quantities in the algorithm and assume the
reader’s basic familiarity with our algorithm. We begin by proving properties (P1)–(P2). First, we state an
easy-to-verify fact, which follows immediately by our choice of radius and components’ centers.

Fact 4.2 If vertexu lies in componentC(t)
s , thendist (t)(s, u) ≤ r(t). Moreover,u ∈ B

(t)
s .

We also need the following lemma to argue about strong diameter.

Lemma 4.3 If vertexu ∈ C
(t)
s , and vertexv ∈ V (t) lies on anyu-s shortest path inG(t), thenv ∈ C

(t)
s .

Proof: Sinceu ∈ C
(t)
s , Fact4.2 implies u belongs toB(t)

s . But dist (t)(v, i) < dist
(t)(u, i), and hencev

belongs toB(t)
s andX(t) as well. This implies thatv is assigned tosomecomponentC(t)

j ; we claimj = s.

For a contradiction, assume thatj 6= s, and hencedist (t)(v, j) + δ
(t)
j ≤ dist

(t)(v, s) + δ
(t)
s . In this case

dist
(t)(u, j) + δ

(t)
j ≤ dist

(t)(u, v) + dist
(t)(v, j) + δ

(t)
j (by the triangle inequality). Now using the assumption,

6

Algorithm 4.1 splitGraph (G = (V,E), ρ) — Split an input graphG = (V,E) into components of hop-
radius at mostρ.

LetG(1) = (V (1), E(1))← G. DefineR = ρ/(2 logn). Create empty collection of componentsC.
Usedist (t) as shorthand fordistG(t) , and defineB(t)(u, r)

def
= BG(t)(u, r) = {v ∈ V (t) | dist (t)(u, v) ≤ r}.

For t = 1, 2, . . . , T = 2 log2 n,

1. Randomly sampleS(t) ⊆ V (t), where|S(t)|| = σt = 12nt/T−1|V (t)| logn, or useS(t) = V (t) if |V (t)| < σt.

2. For each “center”s ∈ S(t), drawδ
(t)
s uniformly at random fromZ ∩ [0, R].

3. Letr(t) ← (T − t+ 1)R.

4. For each centers ∈ S(t), compute the ballB(t)
s = B(t)(s, r(t) − δ

(t)
s).

5. LetX(t) = ∪s∈S(t)B
(t)
s .

6. Create components{C(t)
s | s ∈ S(t)} by assigning eachu ∈ X(t) to the componentC(t)

s such thats minimizes

distG(t)(u, s) + δ
(t)
s (breaking ties lexicographically).

7. Add non-emptyC(t)
s components toC.

8. SetV (t+1) ← V (t) \X(t), and letG(t+1) ← G(t)[V (t+1)]. Quit early ifV (t+1) is empty.

ReturnC.

this expression is at mostdist (t)(u, v) + dist
(t)(v, s) + δ

(t)
s = dist

(t)(u, s) + δ
(t)
s (sincev lies on the shortest

u-s path). But then,u would be also assigned toC(t)
j , a contradiction. �

Hence, for each non-empty componentC
(t)
s , its centers lies within the component (since it lies on the

shortest path froms to anyu ∈ C
(t)
s), which proves (P1). Moreover, by Fact4.2and Lemma4.3, the (strong)

radius is at mostTR, proving (P2). It now remains to prove (P3), and the work and depth bounds.

Lemma 4.4 For any vertexu ∈ V , with probability at least1 − n−6, there are at most68 log2 n pairs6 (s, t)
such thats ∈ S(t) andu ∈ B(t)(s, r(t)),

We will prove this lemma in a series of claims.

Claim 4.5 For t ∈ [T] andv ∈ V (t), if |B(t)(v, r(t+1))| ≥ n1−t/T , thenv ∈ X(t) w.p. at least1− n−12.

Proof: First, note that for anys ∈ S(t), r(t) − δs ≥ r(t) − R = r(t+1), and so ifs ∈ B(t)(v, r(t+1)), then

v ∈ B
(t)
s and hence inX(t). Therefore,

Pr
[
v ∈ X(t)

]
≥ Pr

[
S(t) ∩B(t)(v, r(t+1)) 6= ∅

]
,

which is the probability that a random subset ofV (t) of sizeσt hits the ballB(t)(v, r(t+1)). But,

Pr
[
S(t) ∩B(t)(v, r(t+1)) 6= ∅

]
≥ 1−

(
1− |B(t)(v,r(t+1))|

|V (t)|

)σt

,

which is at least1− n−12. �

Claim 4.6 For t ∈ [T] andv ∈ V , the number ofs ∈ S(t) such thatv ∈ B(t)(s, r(t)) is at most34 log n w.p. at
least1− n−8.

6In fact, for a givens, there is a uniquet—if this s is ever chosen as a “starting point.”

7

Proof: For t = 1, the sizeσ1 = O(log n) and hence the claim follows trivially. Fort ≥ 2, we condition on all
the choices made in rounds1, 2, . . . , t− 2. Note that ifv does not survive inV (t−1), then it does not belong to
V (t) either, and the claim is immediate. So, consider two cases, depending on the size of the ballB(t−1)(v, r(t))
in iterationt− 1:

— Case 1.If |B(t−1)(v, r(t))| ≥ n1−(t−1)/T , then by Claim 3.5, with probability at least1 − n−12, we have
v ∈ X(t−1), sov would not belong toV (t) and this meansno s ∈ S(t) will satisfy v ∈ B(t)(s, r(t)), proving
the claim for this case.

— Case 2.Otherwise,|B(t−1)(v, r(t))| < n1−(t−1)/T . We have

|B(t)(v, r(t))| ≤ |B(t−1)(v, r(t))| < n1−(t−1)/T

as B(t)(v, r(t)) ⊆ B(t−1)(v, r(t)). Now let X be the number ofs such thatv ∈ B(t)(s, r(t)), so X =∑
s∈S(t) 1{s∈B(t)(v,r(t))}. Over the random choice ofS(t),

Pr
[
s ∈ B(t)(v, r(t))

]
=
|B(t)(v, r(t))|
|V (t)| ≤ 1

|V (t)|n
1−(t−1)/T ,

which gives

E [X] = σt · Pr
[
s ∈ B(t)(v, r(t))

]
≤ 17 log n.

To obtain a high probability bound forX, we will apply the tail bound in Lemma2.1. Note thatX is simply
a hypergeometric random variable with the following parameters setting: total ballsN = |V (t)|, red balls
M = |B(t)(v, r(t))|, and the number balls drawn isσt. Therefore,Pr [X ≥ 34 log n] ≤ exp{−1

4 · 34 log n}, so
X ≤ 34 log n with probability at least1− n−8.

Hence, regardless of what choices we made in rounds1, 2, . . . , t − 2, the conditional probability of seeing
more than34 log n differents’s is at mostn−8. Hence, we can remove the conditioning, and the claim follows.
�

Lemma 4.7 If for each vertexu ∈ V , there are at most68 log2 n pairs (s, t) such thats ∈ S(t) and u ∈
B(t)(s, r(t)), then for an edgeuv, the probability thatu belongs to a different component thanv is at most
68 log2 n/R.

Proof: We define a centers ∈ S(t) as “separating”u andv if |B(t)
s ∩{u, v}| = 1. Clearly, ifu, v lie in different

components then there is somet ∈ [T] and some centers that separates them. For a centers ∈ S(t), this can
happen only ifδs = R − dist(s, u), sincedist(s, v) ≤ dist(s, u) − 1. As there areR possible values ofδs,
this event occurs with probability at most1/R. And since there are only68 log2 n different centerss that can
possibly cut the edge, using a trivial union bound over them gives us an upper bound of68 log2 n/R on the
probability. �

To argue about (P3), notice that the premise to Lemma4.7 holds with probability exceeding1 − o(1) ≥
3/4. Combining this with Lemma4.4 proves property (P3), where the technical condition is the premise to
Lemma4.7.

Finally, we consider the work and depth of the algorithm. These are randomized bounds. Each computation
of B(t)(v, r(t)) can be done using a BFS. Sincer(t) ≤ ρ, the depth is bounded byO(ρ log n) per iteration,
resulting inO(ρ log2 n) afterT = O(log n) iterations. As for work, by Lemma4.4, each vertex is reached by
at mostO(log2 n) starting points, yielding a total work ofO(m log2 n).

8

4.2 Low-Diameter Decomposition for Multiple Edge Classes

Extending the basic algorithm to support multiple edge classes is straightforward. The main idea is as follows.
Suppose we are given a unweighted graphG = (V,E), and the edge setE is composed ofk edge classes
E1 ⊎ · · · ⊎ Ek. So, if we runsplitGraph on G = (V,E) andρ treating the different classes as one, then
property (P3) indicates that each edge—regardless of whichclass it came from—is separated (i.e., it goes
across components) with probabilityp = 136

ρ log3 n. This allows us to prove the following corollary, which
follows directly from Markov’s inequality and the union bounds.

Corollary 4.8 With probability at least1/4, for all i ∈ [k], the number of edges inEi that are between

components is at most|Ei|272k log3 n
ρ .

The corollary suggests a simple way to usesplitGraph to provide guarantees required by Theorem4.1:
as summarized in Algorithm4.2, we runsplitGraph on the input graph treating all edge classes as one and

repeat it if any of the edge classes had too many edges cut (i.e., more than|Ei|272k log3 n
ρ). As the corollary

indicates, the number of trials is a geometric random variable with with p = 1/4, so in expectation, it will
finish after4 trials. Furthermore, although it could go on forever in the worst case, the probability does fall
exponentially fast.

Algorithm 4.2 Partition (G = (V,E = E1 ⊎ · · · ⊎ Ek), ρ) — Partition an input graphG into components
of radius at mostρ.

1. LetC = splitGraph((V,⊎Ei), ρ).

2. If there is somei such thatEi has more than|Ei|272·k log3 n
ρ edges between components, start over. (Recall

thatk was the number of edge classes.)

ReturnC.

Finally, we note that properties (P1) and (P2) directly giveTheorem4.1(1)–(2)—and the validation step
in Partition ensures Theorem4.1(3), settingc1 = 272. The work and depth bounds forPartition follow
from the bounds derived forsplitGraph and Corollary4.8. This concludes the proof of Theorem4.1.

5 Parallel Low-Stretch Spanning Trees and Subgraphs

This section presents parallel algorithms for low-stretchspanning trees and for low-stretch spanning subgraphs.
To obtain the low-stretch spanning tree algorithm, we applythe construction of Alon et al. [AKPW95] (hence-
forth, the AKPW construction), together with the parallel graph partition algorithm from the previous section.
The resulting procedure, however, is not ideal for two reasons: the depth of the algorithm depends on the
“spread”∆—the ratio between the heaviest edge and the lightest edge—and even for polynomial spread, both
the depth and the average stretch are super-logarithmic (both of them have a2O(

√
logn·log logn) term). Fortu-

nately, for our application, we observe that we do not need spanning trees but merely low-stretch sparse graphs.
In Section5.2, we describe modifications to this construction to obtain a parallel algorithm which computes
sparse subgraphs that give us only polylogarithmic averagestretch and that can be computed in polylogarithmic
depth andÕ(m) work. We believe that this construction may be of independent interest.

9

5.1 Low-Stretch Spanning Trees

Using the AKPW construction, along with thePartition procedure from Section4, we will prove the follow-
ing theorem:

Theorem 5.1 (Low-Stretch Spanning Tree)There is an algorithmAKPW(G) which given as input a graph
G = (V,E,w), produces a spanning tree inO(logO(1) n · 2O(

√
logn·log logn) log∆) expected depth and̃O(m)

expected work such that the total stretch of all edges is bounded bym · 2O(
√
logn·log logn).

Algorithm 5.1 AKPW (G = (V,E,w)) — a low-stretch spanning tree construction.
i. Normalize the edges so thatmin{w(e) : e ∈ E} = 1.
ii. Let y = 2

√
6 logn·log logn, τ = ⌈3 log(n)/ log y⌉, z = 4c1yτ log

3 n. InitializeT = ∅.
iii. Divide E intoE1, E2, . . . , whereEi = {e ∈ E | w(e) ∈ [zi−1, zi)}.

LetE(1) = E andE(1)
i = Ei for all i.

iv. For j = 1, 2, . . . , until the graph is exhausted,

1. (C1, C2, . . . , Cp) = Partition((V (j),⊎i≤jE
(j)
i), z/4)

2. Add a BFS tree of each component toT .

3. Define graph(V (j+1), E(j+1)) by contracting all edges within the components and removingall self-loops (but
maintaining parallel edges). CreateE(j+1)

i fromE
(j)
i taking into account the contractions.

v. Output the treeT .

Presented in Algorithm5.1is a restatement of the AKPW algorithm, except that here we will use our parallel
low-diameter decomposition for the partition step. In words, iterationj of Algorithm 5.1 looks at a graph
(V (j), E(j)) which is a minor of the original graph (because components were contracted in previous iterations,
and because it only considers the edges in the firstj weight classes). It usesPartition((V,⊎j≤kEj), z/4) to
decompose this graph into components such that the hop radius is at mostz/4 and each weight class has only
1/y fraction of its edges crossing between components. (Parametersy, z are defined in the algorithm and are
slightly different from the original settings in the AKPW algorithm.) It then shrinks each of the components
into a single node (while adding a BFS tree on that component to T), and iterates on this graph. Adding these
BFS trees maintains the invariant that the set of original nodes which have been contracted into a (super-)node
in the current graph are connected inT ; hence, when the algorithm stops, we have a spanning tree of the original
graph—hopefully of low total stretch.

We begin the analysis of the total stretch and running time byproving two useful facts:

Fact 5.2 The number of edges|E(j)
i | is at most|Ei|/yj−i.

Proof: If we could ensure that the number of weight classes in play atany time is at mostτ , the number of
edges in each class would fall by at least a factor ofc1τ log3 n

z/4 = 1/y by Theorem4.1(3) and the definition
of z, and this would prove the fact. Now, for the firstτ iterations, the number of weight classes is at mostτ
just because we consider only the firstj weight classes in iterationj. Now in iterationτ + 1, the number of
surviving edges ofE1 would fall to |E1|/yτ ≤ |E1|/n3 < 1, and hence there would only beτ weight classes
left. It is easy to see that this invariant can be maintained over the course of the algorithm. �

Fact 5.3 In iteration j, the radius of a component according to edge weights (in the expanded-out graph) is at
mostzj+1.

10

Proof: The proof is by induction onj. First, note that by Theorem4.1(2), each of the clusters computed in
any iterationj has edge-count radius at mostz/4. Now the base casej = 1 follows by noting that each edge
in E1 has weight less thanz, giving a radius of at mostz2/4 < zj+1. Now assume inductively that the radius
in iterationj − 1 is at mostzj. Now any path withz/4 edges from the center to some node in the contracted
graph will pass through at mostz/4 edges of weight at mostzj , and at mostz/4+1 supernodes, each of which
adds a distance of2zj ; hence, the new radius is at mostzj+1/4 + (z/4 + 1)2zj ≤ zj+1 as long asz ≥ 8. �

Applying these facts, we bound the total stretch of an edge class.

Lemma 5.4 For anyi ≥ 1, strT (Ei) ≤ 4y2|Ei|(4c1τ log3 n)τ+1.

Proof: Let e be an edge inEi contracted during iterationj. Sincee ∈ Ei, we knoww(e) > zi−1. By Fact5.3,
the path connecting the two endpoints ofe in F has distance at most2zj+1. Thus,strT (e) ≤ 2zj+1/zi−1 =

2zj−i+2. Fact5.2 indicates that the number of such edges is at most|E(j)
i | ≤ |Ei|/yj−i. We conclude that

strT (Ei) ≤
i+τ−1∑

j=i

2zj−i+2|Ei|/yj−i

≤ 4y2|Ei|(4c1τ log3 n)τ+1

�

Proof: [of Theorem5.1] Summing across the edge classes gives the promised bound onstretch. Now there are
⌈logz ∆⌉ weight classesEi’s in all, and since each time the number of edges in a (non-empty) class drops by a
factor ofy, the algorithm has at mostO(log∆+τ) iterations. By Theorem4.1and standard techniques, each it-
eration doesO(m log2 n) work and hasO(z log2 n) = O(logO(1) n ·2O(

√
logn·log logn)) depth in expectation.�

5.2 Low-Stretch Spanning Subgraphs

We now show how to alter the parallel low-stretch spanning tree construction from the preceding section to give
a low-stretch spanningsubgraphconstruction that has no dependence on the “spread,” and moreover has only
polylogarithmic stretch. This comes at the cost of obtaining a sparse subgraph withn − 1 + O(m/polylog n)
edges instead of a tree, but suffices for our solver application. The two main ideas behind these improvements
are the following: Firstly, the number of surviving edges ineach weight class decreases by a logarithmic factor
in each iteration; hence, we could throw in all surviving edges after they have been whittled down in a constant
number of iterations—this removes the factor of2O(

√
logn·log logn)from both the average stretch and the depth.

Secondly, if∆ is large, we will identify certain weight-classes withO(m/polylog n) edges, which by setting
them aside, will allow us to break up the chain of dependencies and obtainO(polylog n) depth; these edges will
be thrown back into the final solution, addingO(m/polylog n) extra edges (which we can tolerate) without
increasing the average stretch.

5.2.1 The First Improvement

Let us first show how to achieve polylogarithmic stretch withan ultra-sparse subgraph. Given parametersλ ∈
Z>0 andβ ≥ c2 log

3 n (wherec2 = 2 ·(4c1(λ+1))
1
2
(λ−1)), we obtain the new algorithmSparseAKPW(G,λ, β)

11

by modifying Algorithm5.1as follows:

(1) use the altered parametersy = 1
c2
β/ log3 n andz = 4c1y(λ+ 1) log3 n;

(2) in each iterationj, callPartitionwith at mostλ+1 edge classes—keep theλ classesE(j)
j , E

(j)
j−1, . . . , E

(j)
j−λ+1,

but then define a “generic bucket”E(j)
0 := ∪j′≤j−λE

(j)
j′ as the last part of the partition; and

(3) finally, output not just the treeT but the subgrapĥG = T ∪ (∪i≥1E
(i+λ)
i).

Lemma 5.5 Given a graphG, parametersλ ∈ Z>0 andβ ≥ c2 log
3 n (wherec2 = 2 · (4c1(λ+1))

1
2
(λ−1)) the

algorithmSparseAKPW(G,λ, β) outputs a subgraph ofGwith at mostn−1+m(c2(log
3 n/β))λ edges and total

stretch at mostmβ2 log3λ+3 n. Moreover, the expected work is̃O(m) and expected depth isO((c1β/c2)λ log
2 n(log∆+

log n)).

Proof: The proof parallels that for Theorem5.1. Fact5.3 remains unchanged. The claim from Fact5.2 now
remains true only forj ∈ {i, . . . , i + λ − 1}; after that the edges inE(j)

i become part ofE(j)
0 , and we only

give a cumulative guarantee on the generic bucket. But this does hurt us: ife ∈ Ei is contracted in iteration
j ≤ i + λ − 1 (i.e., it lies within a component formed in iterationj), thenstr

Ĝ
(e) ≤ 2zj−i+2. And the edges

of Ei that survive till iterationj ≥ i + λ have stretch1 because they are eventually all added toĜ; hence we
do not have to worry that they belong to the classE

(j)
0 for those iterations. Thus,

strĜ(Ei) ≤
i+λ−1∑

j=i

2zj−i+2 · |Ei|/yj−i ≤ 4y2(
z

y
)λ−1|Ei|.

Summing across the edge classes givesstr
Ĝ
(E) ≤ 4y2(zy)

λ−1m, which simplifies toO(mβ2 log3λ+3 n).
Next, the number of edges in the output follows directly fromthe factT can have at mostn− 1 edges, and the
number of extra edges from each class is only a1/yλ fraction (i.e.,|E(i+λ)

i | ≤ |Ei|/yλ from Fact5.2). Finally,
the work remains the same; for each of the(log∆ + τ) distance scales the depth is stillO(z log2 n), but the
new value ofz causes this to becomeO((c1β/c2)λ log

2 n). �

5.2.2 The Second Improvement

The depth of theSparseAKPW algorithm still depends onlog∆, and the reason is straightforward: the graph
G(j) used in iterationj is built by takingG(1) and contracting edges in each iteration—hence, it depends on all
previous iterations. However, the crucial observation is that if we hadτ consecutive weight classesEi’s which
are empty, we could break this chain of dependencies at this point. However, there may be no empty weight
classes; but having weight classes with relatively few edges is enough, as we show next.

Fact 5.6 Given a graphG = (V,E) and a subset of edgesF ⊆ E, letG′ = G\F be a potentially disconnected
graph. IfĜ′ is a subgraph ofG′ with total stretchstr

Ĝ′
(E(G′)) ≤ D, then the total stretch ofE onĜ := Ĝ′∪F

is at most|F |+D.

Consider a graphG = (V,E,w) with edge weightsw(e) ≥ 1, and letEi(G) := {e ∈ E(G) | w(e) ∈
[zi−1, zi)} be the weight classes. Then,G is called(γ, τ)-well-spacedif there is a set ofspecialweight classes

12

{Ei(G)}i∈I such that for eachi ∈ I, (a) there are at mostγ weight classes before the following special weight
classmin{i′ ∈ I ∪ {∞} | i′ > i}, and (b) theτ weight classesEi−1(G), Ei−2(G), . . . , Ei−τ (G) precedingi
are all empty.

Lemma 5.7 Given any graphG = (V,E), τ ∈ Z+, andθ ≤ 1, there exists a graphG′ = (V,E′) which is
(4τ/θ, τ)-well-spaced, and|E′ \ E| ≤ θ · |E|. Moreover,G′ can be constructed inO(m) work andO(log n)
depth.

Proof: Let δ = log∆
log z ; note that the edge classes forG areE1, . . . , Eδ, some of which may be empty. Denote by

EJ the union∪i∈JEi. We constructG′ as follows: Divide these edge classes into disjoint groupsJ1, J2, . . . ⊆
[δ], where each group consists of⌈τ/θ⌉ consecutive classes. Within a groupJi, by an averaging argument,
there must be a rangeLi ⊆ Ji of τ consecutiveedge classes that contains at most aθ fraction of all the edges
in this group, i.e.,|ELi

| ≤ θ · |EJi | and|Li| ≥ τ . We formG′ by removing these the edges in all these groups
Li’s from G, i.e.,G′ = (V,E \ (∪iELi

)). This removes only aθ fraction of all the edges of the graph.

We claimG′ is (4τ/θ, τ)-well-spaced. Indeed, if we remove the groupLi, then we designate the smallest
j ∈ [δ] such thatj > max{j′ ∈ Li} as a special bucket (if such aj exists). Since we removed the edges inELi

,
the second condition for being well-spaced follows. Moreover, the number of buckets between a special bucket
and the following one is at most

2⌈τ/θ⌉ − (τ − 1) ≤ 4τ/θ.

Finally, these computations can be done inO(m) work andO(log n) depth using standard techniques [JáJ92,
Lei92]. �

Lemma 5.8 Let τ = 3log n/log y. Given a graphG which is(γ, τ)-well-spaced,SparseAKPW can be com-
puted onG with Õ(m) work andO(c1c2γλβ log2 n) depth.

Proof: SinceG is (γ, τ)-well-spaced, each special bucketi ∈ I must be preceded byτ empty buckets. Hence,
in iteration i of SparseAKPW, any surviving edges belong to bucketsEi−τ or smaller. However, these edges
have been reduced by a factor ofy in each iteration and sinceτ > logy n

2, all the edges have been contracted

in previous iterations—i.e.,E(i)
ℓ for ℓ < i is empty.

Consider any special bucketi: we claim that we can construct the vertex setV (i) thatSparseAKPW sees at
the beginning of iterationi, without having to run the previous iterations. Indeed, we can just take the MST
on the entire graphG = G(1), retain only the edges from bucketsEi−τ and lower, and contract the connected
components of this forest to getV (i). And once we know this vertex setV (i), we can drop out the edges from
Ei and higher buckets which have been contracted (these are nowself-loops), and execute iterationsi, i+1, . . .
of SparseAKPW without waiting for the preceding iterations to finish. Moreover, given the MST, all this can be
done inO(m) work andO(log n) depth.

Finally, for each special bucketi in parallel, we start runningSparseAKPW at iterationi. Since there are at
mostγ iterations until the next special bucket, the total depth isonly O(γz log2 n) = O(c1c2γλβ log2 n). �

Theorem 5.9 (Low-Stretch Subgraphs)Given a weighted graphG, λ ∈ Z>0, and β ≥ c2 log
3 n (where

c2 = 2 · (4c1(λ+ 1))
1
2
(λ−1)), there is an algorithmLSSubgraph(G,β, λ) that finds a subgrapĥG such that

1. |E(Ĝ)| ≤ n− 1 +m
(
cLS

log3 n
β

)λ

13

2. The total stretch (of allE(G) edges) in the subgrapĥG is at most bymβ2 log3λ+3 n,

wherecLS (= c2+1) is a constant. Moreover, the procedure runs inÕ(m) work andO(λβλ+1 log3−3λ n) depth.
If λ = O(1) andβ = polylog(n), the depth term simplifies toO(logO(1) n).

Proof: Given a graphG, we setτ = 3log n/log y andθ = (log3 n/β)λ, and apply Lemma5.7 to delete at
mostθm edges, and get a(4τ/θ, τ)-well-spaced graphG′. Letm′ = |E′|. On this graph, we runSparseAKPW
to obtain a grapĥG′ with n−1+m′(c2(log

3 n/β))λ edges and total stretch at mostm′β2 log3λ+3 n; moreover,
Lemma5.8shows this can be computed with̃O(m) work and the depth is

O

(
c1
c2
(4τ/θ)λβ log2 n

)
= O(λβλ+1 log3−3λ n).

Finally, we output the grapĥG = Ĝ′ ∪ (E(G) \ E(G′)); this gives the desired bounds on stretch and the
number of edges as implied by Fact5.6and Lemma5.5. �

6 Parallel SDD Solver

In this section, we derive a parallel solver for symmetric diagonally dominant (SDD) linear systems, using the
ingredients developed in the previous sections. The solverfollows closely the line of work of [ST03, ST06,
KM07, KMP10]. Specifically, we will derive a proof for the main theorem (Theorem1.1), the statement of
which is reproduced below.

Theorem 1.1. For any fixedθ > 0 and anyε > 0, there is an algorithmSDDSolve that on input
an SDD matrixA and a vectorb computes a vector̃x such that‖x̃−A+b‖A ≤ ε · ‖A+b‖A in
O(m logO(1) n log 1

ε) work andO(m1/3+θ log 1
ε) depth.

In proving this theorem, we will focus on Laplacian linear systems. As noted earlier, linear systems on SDD
matrices are reducible to systems on graph Laplacians inO(log(m + n)) depth andO(m + n) work [Gre96].
Furthermore, because of the one-to-one correspondence between graphs and their Laplacians, we will use the
two terms interchangeably.

The core of the near-linear time Laplacian solvers in [ST03, ST06, KMP10] is a “preconditioning” chain of
progressively smaller graphs〈A1 = A,A2, . . . , Ad〉, along with a well-understood recursive algorithm, known
as recursive preconditioned Chebyshev method—rPCh, that traverses the levels of the chain and for each visit
at leveli < d, performsO(1) matrix-vector multiplications withAi and other simple vector-vector operations.
Each time the algorithm reaches leveld, it solves a linear system onAd using a direct method. Except for
solving the bottom-level systems, all these operations canbe accomplished in linear work andO(log(m+ n))
depth. The recursion itself is based on a simple scheme; for each visit at leveli the algorithm makes at mostκ′i
recursive calls to leveli+1, whereκ′i ≥ 2 is a fixed system-independent integer. Therefore, assumingwe have
computed a chain of preconditioners, the total required depth is (up to a log) equal to the total number of times
the algorithm reaches the last (and smallest) levelAd.

14

6.1 Parallel Construction of Solver Chain

The construction of the preconditioning chain in [KMP10] relies on a subroutine that on input a graphAi,
constructs a slightly sparser graphBi which is spectrally related toAi. This “incremental sparsification” routine
is in turn based on the computation of a low-stretch tree forAi. The parallelization of the low-stretch tree
is actually the main obstacle in parallelizing the whole solver presented in [KMP10]. Crucial to effectively
applying our result in Section5 is a simple observation that the sparsification routine of [KMP10] only requires a
low-stretch spanning subgraph rather than a tree.Then, with the exception of some parameters in its construction,
the preconditioning chain remains essentially the same.

The following lemma is immediate from Section 6 of [KMP10].

Lemma 6.1 Given a graphG and a subgrapĥG of G such that the total stretch of all edges inG with respect
to Ĝ ism ·S, a parameter on condition numberκ, and a success probability1− 1/ξ, there is an algorithm that
constructs a graphH such that

1. G � H � κ ·G, and

2. |E(H)| = |E(Ĝ)|+ (cIS · S log n log ξ)/κ

in O(log2 n) depth andO(m log2 n) work, wherecIS is an absolute constant.

Although Lemma6.1 was originally stated witĥG being a spanning tree, the proof in fact works without
changes for an arbitrary subgraph. For our purposes,ξ has to be at mostO(log n) and that introduces an
additionalO(log log n) term. For simplicity, in the rest of the section, we will consider this as an extralog n
factor.

Lemma 6.2 Given a weighted graphG, parametersλ and η such thatη ≥ λ ≥ 16, we can construct in
O(log2ηλ n) depth andÕ(m) work another graphH such that

1. G � H � 1
10 · logηλ n ·G

2. |E(H)| ≤ n− 1 +m · cPC/log
ηλ−2η−4λ (n),

wherecPC is an absolute constant.

Proof: Let Ĝ = LSSubgraph(G,λ, logη n). Then, Theorem5.9shows that|E(Ĝ)| is at most

n− 1 +m

(
cLS · log3 n

β

)λ

= n− 1 +m

(
cLS

logη−3 n

)λ

Furthermore, the total stretch of all edges inG with respect toĜ is at most

S = mβ2 logλ+3 n ≤ m log2η+3λ+3 n.

Applying Lemma6.1with κ = 1
10 log

ηλ n givesH such thatG � H � 1
10 log

ηλ n ·G and|E(H)| is at most

n− 1 +m ·
(

cλLS

logλ(η−3) n
+

10 · cIS log
2η+3λ+5 n

logηλ n

)

≤ n− 1 +m · cPC

logηλ−2λ−3k−5 n

≤ n− 1 +m · cPC

logηλ−2η−4λ n
.

15

�

We now give a more precise definition of the preconditioning chain we use for the parallel solver by giving
the pseudocode for constructing it.

Definition 6.3 (Preconditioning Chain) Consider a chain of graphs

C = 〈A1 = A,B1, A2, . . . , Ad〉,

and denote byni andmi the number of nodes and edges ofAi respectively. We say thatC is preconditioning
chainfor A if

1. Bi = IncrementalSparsify(Ai).

2. Ai+1 = GreedyElimination(Bi).

3. Ai � Bi � 1/10 · κiAi, for some explicitly known integerκi. 7

As noted above, therPCh algorithm relies on finding the solution of linear systems onAd, the bottom-level
systems. To parallelize these solves, we make use of the following fact which can be found in Sections 3.4. and
4.2 of [GVL96].

Fact 6.4 A factorizationLL⊤ of the pseudo-inverse of ann-by-n LaplacianA, whereL is a lower triangular
matrix, can be computed inO(n) time andO(n3) work, and any solves thereafter can be done inO(log n) time
andO(n2) work.

Note that althoughA is not positive definite, its null space is the space spanned by the all1s vector when the
underlying graph is connected. Therefore, we can in turn drop the first row and column to obtain a semi-definite
matrix on which LU factorization is numerically stable.

The routineGreedyElimination is a partial Cholesky factorization (for details see [ST06] or [KMP10])
on vertices of degree at most2. From a graph-theoretic point of view, the routineGreedyElimination can
be viewed as simply recursively removing nodes of degree oneand splicing out nodes of degree two. The
sequential version ofGreedyElimination returns a graph with no degree1 or 2 nodes. The parallel version
that we present below leaves some degree-2 nodes in the graph, but their number will be small enough to not
affect the complexity.

Lemma 6.5 If G hasn vertices andn− 1 +m edges, then the procedureGreedyElimination(G) returns a
graph with at most2m− 2 nodes inO(n+m) work andO(log n) depthwhp.

Proof: The sequential version ofGreedyElimination(G) is equivalent to repeatedly removing degree1
vertices and splicing out2 vertices until no more exist while maintaining self-loops and multiple edges (see,
e.g., [ST03, ST06] and [Kou07, Section 2.3.4]). Thus, the problem is a slight generalization of parallel tree
contraction [MR89]. In the parallel version, we show that while the graph has more than2m − 2 nodes, we
can efficiently find and eliminate a “large” independent set of degree two nodes, in addition to all degree one
vertices.

We alternate between two steps, which are equivalent toRake andCompress in [MR89], until the vertex
count is at most2m− 2:
Mark an independent set of degree 2 vertices, then

7The constant of1/10 in the condition number is introduced only to simplify subsequent notation.

16

1. Contract all degree1 vertices, and

2. Compress and/or contract out the marked vertices.

To find the independent set, we use a randomized marking algorithm on the degree two vertices (this is used
in place of maximal independent set for work efficiency): Each degree two node flips a coin with probability13
of turning up heads; we mark a node if it is a heads and its neighbors either did not flip a coin or flipped a tail.

We show that the two steps above will remove a constant fraction of “extra” vertices. LetG is a multigraph
with n vertices andm+n−1 edges. First, observe that if all vertices have degree at least three thenn ≤ 2(m−1)
and we would be finished. So, letT be any fixed spanning tree ofG; let a1 (resp.a2) be the number of vertices
in T of degree one (resp. two) anda3 the number those of degree three or more. Similarly, letb1, b2, andb3 be
the number vertices inG of degree1, 2, and at least3, respectively, where the degree is the vertex’s degree in
G.

It is easy to check that in expectation, these two steps removeb1+ 4
27b2 ≥ b1+

1
7b2 vertices. In the following,

we will show thatb1 + 1
7b2 ≥ 1

7∆n, where∆n = n− (2m− 2) = n− 2m+ 2 denotes the number of “extra”
vertices in the graph. Consider non-tree edges and how they are attached to the treeT . Letm1, m2, andm3 be
the number of attachment of the following types, respectively:

(1) an attachment tox, a degree 1 vertex inT , wherex has at least one other attachment.

(2) an attachment tox, a degree 1 vertex inT , wherex has no other attachment.

(3) an attachment to a degree2 vertex inT .

As each edge is incident on two endpoints, we havem1 +m2 +m3 ≤ 2m. Also, we can lower boundb1
andb2 in terms ofmi’s andai’s: we haveb1 ≥ a1 −m1/2−m2 andb2 ≥ m2 + a2 −m3. This gives

b1 +
1
7b2 ≥ 2

7(a1 −m1/2 −m2) +
1
7(m2 + a2 −m3)

= 2
7a1 +

1
7a2 − 1

7(m1 +m2 +m3)

≥ 2
7a1 +

1
7a2 − 2

7m.

Consequently,b1 + 1
7b2 ≥ 1

7(2a1 + a2 − 2m) ≥ 1
7 · ∆n, where to show the last step, it suffices to show that

n+2 ≤ 2a1+a2 for a treeT of n nodes. WLOG, we may assume that all nodes ofT have degree either one or
three, in which case2a1 = n+ 2. Finally, by Chernoff bounds, the algorithm will finish withhigh probability
in O(log n) rounds. �

6.2 Parallel Performance of Solver Chain

Spielman and Teng [ST06, Section 5] gave a (sequential) time bound for solving a linear SDD system given a
preconditioner chain. The following lemma extends their Theorem 5.5 to give parallel runtime bounds (work
and depth), as a function ofκi’s andmi’s. We note that in the bounds below, them2

d term arises from the dense
inverse used to solve the linear system in the bottom level.

Lemma 6.6 There is an algorithm that given a preconditioner chainC = 〈A1 = A,A2, . . . , Ad〉 for a matrix
A, a vectorb, and an error toleranceε, computes a vector̃x such that

‖x̃−A+b‖A ≤ ε · ‖A+b‖A,

17

with depth bounded by
(
∑

1≤i≤d

∏

1≤j<i

√
κj

)
log n log

(
1
ε

)
≤ O

((
∏

1≤j<d

√
κj

)
log n log

(
1
ε

)
)

and work bounded by 
 ∑

1≤i≤d−1

mi ·
∏

j≤i

√
κj +m2

d

∏

1≤j<d

√
κj


 log

(
1
ε

)
.

To reason about Lemma6.6, we will rely on the following lemma about preconditioned Chebyshev iteration
and the recursive solves that happen at each level of the chain. This lemma is a restatement of Spielman and
Teng’s Lemma 5.3 (slightly modified so that the

√
κi does not involve a constant, which shows up instead as

constant in the preconditioner chain’s definition).

Lemma 6.7 Given a preconditioner chain of lengthd, it is possible to construct linear operatorssolveAi
for

all i ≤ d such that
(1− e−2)A+

i � solveAi
� (1 + e2)

and solveAi
is a polynomial of degree

√
κi involving solveAi+1 and4 matrices withmi non-zero entries (from

GreedyElimination).

Armed with this, we state and prove the following lemma:

Lemma 6.8 For ℓ ≥ 1, given any vectorb, the vectorsolveAℓ
· b can be computed in depth

log n
∑

ℓ≤i≤d

∏

ℓ≤j<i

√
κj

and work ∑

ℓ≤i≤d−1

mi ·
∏

ℓ≤j≤i

√
κj +m2

d

∏

ℓ≤j<d

√
κj

Proof: The proof is by induction in decreasing order onℓ. Whend = ℓ, all we are doing is a matrix multipli-
cation with a dense inverse. This takesO(log n) depth andO(m2

d) work.

Suppose the result is true forℓ + 1. Then sincesolveAℓ
can be expressed as a polynomial of degree

√
κℓ

involving an operator that issolveAℓ+1
multiplied by at most4 matrices withO(mℓ) non-zero entries. We have

that the total depth is

log n
√
κℓ +

√
κℓ ·


log n

∑

ℓ+1≤i≤d

∏

ℓ+1≤j<i

√
κj




= log n
∑

ℓ≤i≤d

∏

ℓ≤j<i

√
κj

and the total work is bounded by

√
κℓmℓ +

√
κℓ ·


 ∑

ℓ+1≤i≤d−1

mi ·
∏

ℓ+1≤j≤i

√
κj +m2

d

∏

ℓ+1≤j<d

√
κj




=
∑

ℓ≤i≤d−1

mi ·
∏

ℓ≤j≤i

√
κj +m2

d

∏

ℓ≤j<d

√
κj .

18

�

Proof: [of Lemma6.6] Theε-accuracy bound follows from applying preconditioned Chebyshev tosolveA1 sim-
ilarly to Spielman and Teng’s Theorem 5.5 [ST06], and the running time bounds follow from Lemma6.8when
ℓ = 1. �

6.3 Optimizing the Chain for Depth

Lemma6.6shows that the algorithm’s performance is determined by thesettings ofκi’s andmi’s; however, as
we will be using Lemma6.2, the number of edgesmi is essentially dictated by our choice ofκi. We now show
that if we terminate chain earlier, i.e. adjusting the dimensionAd to roughlyO(m1/3 log ε−1), we can obtain
good parallel performance. As a first attempt, we will setκi’s uniformly:

Lemma 6.9 For any fixedθ > 0, if we construct a preconditioner chain using Lemma6.2 settingλ to some
proper constant greater than 21,η = λ and extending the sequence untilmd ≤ m1/3−δ for someδ depending
on λ, we get a solver algorithm that runs inO(m1/3+θ log(1/ε)) depth andÕ(m log 1/ε) work asλ → ∞,
whereε is the accuracy precision of the solution, as defined in the statement of Theorem1.1.

Proof: By Lemma6.1, we have thatmi+1—the number of edges in leveli+ 1—is bounded by

O(mi ·
cPC

logηλ−2η−4λ
) = O(mi ·

cPC

logλ(λ−6)
),

which can be repeatedly apply to give

mi ≤ m ·
(

cPC

logλ(λ−6) n

)i−1

Therefore, whenλ > 12, we have that for eachi < d,

mi ·
∏

j≤i

√
κ(nj) ≤ m ·

(
cPC

logλ(λ−6) n

)i−1

·
(√

logλ
2
n

)i

= Õ(m) ·
(

cPC

logλ(λ−12)/2 n

)i

≤ Õ(m)

Now consider the term involvingmd. We have thatd is bounded by
(
2

3
+ δ

)
logm/ log (

1

cPC
log nλ(λ−6)).

19

Combining with theκi = logλ
2
n, we get

∏

1≤j≤d

√
κ(nj)

=
(
log nλ2/2

)(2
3
+δ) logm/ log (c lognλ(λ−6))

= exp

(
log log n

λ2

2
(
2

3
+ δ)

logm

λ(λ − 6) log log n− log cPC

)

≤ exp

(
log log n

λ2

2
(
2

3
+ δ)

logm

λ(λ − 7) log log n

)

(since log cPC ≥ − log n)

= exp

(
log n

λ

λ− 7
(
1

3
+

δ

2
)

)

= O(m(1
3
+ δ

2
) λ

λ−7)

Sincemd = O(m
1
3
−δ), the total work is bounded by

O(m(1
3
+ δ

2
) λ

λ−7
+ 2

3
−2δ) = O(m1+ 7

λ−7
−δ λ−14

λ−7)

So, settingδ ≥ 7
λ−14 suffices to bound the total work bỹO(m). And, whenδ is set to 7

λ−14 , the total parallel
running time is bounded by the number of times the last layer is called

∏

j

√
κ(nj) ≤ O(m

(1
3
+ 1

2(λ−14)
) λ

λ−7)

≤ O(m
1
3
+ 7

λ−14
+ λ

2(λ−14)(λ−7))

≤ O(m
1
3
+ 7

λ−14
+ 7

λ−14)

≤ O(m
1
3
+ 14

λ−14) whenλ ≥ 21

Settingλ arbitrarily large suffices to giveO(m1/3+θ) depth. �

To match the promised bounds in Theorem1.1, we improve the performance by reducing the exponent on
the log n term in the total work fromλ2 to some large fixed constant while letting total depth still approach
O(m1/3+θ).

Proof: [of Theorem1.1] Consider settingλ = 13 andη ≥ λ. Then,

ηλ− 2η − 4λ ≥ η(λ− 6) ≥ 7

13
ηλ

We usec4 to denote this constant of713 , namelyc4 satisfies

cPC/ log
ηk−2η−4λ n ≤ cPC/ log

c4ηλ n

We can then pick a constant thresholdL and setκi for all i ≤ L as follows:

κ1 = logλ
2
n, κ2 = log(2c4)λ

2
n, · · · , κi = log(2c4)

i−1λ2
n

20

To solveAL, we apply Lemma6.9, which is analogous to settingAL, . . . , Ad uniformly. The depth required in
constructing these preconditioners isO(md +

∑L
j=1(2c4)

j−1λ2), plusO(md) for computing the inverse at the

last level—for a total ofO(md) = O(m1/3).

As for work, the total work is bounded by

∑

i≤d

mi

∏

1≤j≤i

√
κj +

∏

1≤j≤d

√
κjm

2
d

=
∑

i<L

mi

∏

1≤j≤i

√
κj

+



∏

1≤j<L

√
κj


 ·


√κj

∑

i≥L

mi

∏

L≤j≤i

√
κj +m2

d

∏

L≤j≤d

√
κj




≤
∑

i<L

mi

∏

1≤j≤i

√
κj +


 ∏

1≤j<L

√
κj


mL

√
κL

=
∑

i≤L

mi

∏

1≤j≤i

√
κj

≤
∑

i≤L

m∏
j<i κ

c4
i

∏

1≤j≤i

√
κj

= m
∑

i≤L

√
κ1
∏

2≤j≤i

√
κ2c4j−1∏

j<i κ
c4
i

= mL
√
κ1

The first inequality follows from the fact that the exponent of logn in κL can be arbitrarily large, and then
applying Lemma6.9 to the solves after levelL. The fact thatmi+1 ≤ mi · O(1/κc4i) follows from Lemma6.2.

SinceL is a constant,
∏

1≤j≤L ∈ O(polylog n), so the total depth is still bounded byO(m1/3+θ) by
Lemma6.9. �

7 Conclusion

We presented a near linear-work parallel algorithm for constructing graph decompositions with strong-diameter
guarantees and parallel algorithms for constructing2O(

√
logn log logn)-stretch spanning trees andO(logO(1) n)-

stretch ultra-sparse subgraphs. The ultra-sparse subgraphs were shown to be useful in the design of a near
linear-work parallel SDD solver. By plugging our result into previous frameworks, we obtained improved
parallel algorithms for several problems on graphs.

We leave open the design of a (near) linear-work parallel algorithm for the construction of a low-stretch
tree with polylogarithmic stretch. We also feel that the design of (near) work-efficientO(logO(1) n)-depth SDD
solver is a very interesting problem that will probably require the development of new techniques.

21

Acknowledgments

This work is partially supported by the National Science Foundation under grant numbers CCF-1018463, CCF-
1018188, and CCF-1016799, by an Alfred P. Sloan Fellowship,and by generous gifts from IBM, Intel, and
Microsoft.

References

[ABN08] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearlytight low stretch spanning trees. InFOCS,
pages 781–790, 2008.5

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game and its
application to thek-server problem.SIAM J. Comput., 24(1):78–100, 1995.4, 5, 9

[Awe85] Baruch Awerbuch. Complexity of network synchronization. J. Assoc. Comput. Mach., 32(4):804–
823, 1985.4

[BV04] S. Boyd and L. Vandenberghe.Convex Optimization. Camebridge University Press, 2004.2

[Chv79] V. Chvátal. The tail of the hypergeometric distribution. Discrete Mathematics, 25(3):285–287,
1979.3, 4

[CKM+10] Paul Christiano, Jonathan A. Kelner, Aleksander Madry,Daniel Spielman, and Shang-Hua Teng.
Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected
graphs. 2010.2

[Coh93] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. InProceedings of
the 1993 IEEE 34th Annual Foundations of Computer Science, pages 648–658, Washington, DC,
USA, 1993. IEEE Computer Society.5

[Coh00] Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths.J. ACM, 47(1):132–166, 2000.3

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow via interior
point algorithms.CoRR, abs/0803.0988, 2008.2

[EEST05] Michael Elkin, Yuval Emek, Daniel A. Spielman, andShang-Hua Teng. Lower-stretch spanning
trees. InProceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
494–503, New York, NY, USA, 2005. ACM Press.5

[Gre96] Keith Gremban.Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant
Linear Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, October 1996. CMU CS
Tech Report CMU-CS-96-123.3, 14

[GVL96] G. H. Golub and C. F. Van Loan.Matrix Computations. Johns Hopkins Press, 3rd edition, 1996.
16

[Hoe63] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.Journal of
the American Statistical Association, 58(301):13–30, 1963.3, 4

[JáJ92] Joseph JáJá.An Introduction to Parallel Algorithms. Addison-Wesley, 1992.13

22

[KM07] Ioannis Koutis and Gary L. Miller. A linear work,O(n1/6) time, parallel algorithm for solving
planar laplacians. InSODA, pages 1002–1011, 2007.1, 14

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD linear
systems. InFOCS, pages 235–244, 2010.4, 14, 15, 16

[KMP11] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearlym log n time solver for SDD linear
systems. InFOCS, page (to appear), 2011.1

[Kou07] Ioannis Koutis.Combinatorial and algebraic algorithms for optimal multilevel algorithms. PhD
thesis, Carnegie Mellon University, Pittsburgh, May 2007.CMU CS Tech Report CMU-CS-07-
131. 16

[KS97] Philip N. Klein and Sairam Subramanian. A randomizedparallel algorithm for single-source short-
est paths.J. Algorithms, 25(2):205–220, 1997.3

[Lei92] F. Thomson Leighton.Introduction to Parallel Algorithms and Architectures: Array, Trees, Hyper-
cubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992. 13

[MR89] Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. In Silvio Micali,
editor,Randomness and Computation, pages 47–72. JAI Press, Greenwich, Connecticut, 1989. Vol.
5. 16

[Ren01] James Renegar.A mathematical view of interior-point methods in convex optimization. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.2

[Ska09] Matthew Skala. Hypergeometric tail inequalities:ending the insanity, 2009.3, 4

[Spi10] Daniel A. Spielman. Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices. In
Proceedings of the International Congress of Mathematicians, 2010.1

[SS08] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. InSTOC,
pages 563–568, 2008.2

[ST03] Daniel A. Spielman and Shang-Hua Teng. Solving sparse, symmetric, diagonally-dominant linear
systems in timeO(m1.31). In FOCS, pages 416–427, 2003.14, 16

[ST06] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems.CoRR, abs/cs/0607105, 2006.4, 5, 14,
16, 17, 19

[Ten10] Shang-Hua Teng. The Laplacian Paradigm: Emerging Algorithms for Massive Graphs. InTheory
and Applications of Models of Computation, pages 2–14, 2010.1

[UY91] Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure algorithms.
SIAM J. Comput., 20(1):100–125, 1991.3

[Ye97] Y. Ye. Interior point algorithms: theory and analysis. Wiley, 1997.2

23

	1 Introduction
	2 Preliminaries and Notation
	3 Overview of Our Techniques
	4 Parallel Low-Diameter Decomposition
	4.1 Low-Diameter Decomposition for Simple Unweighted Graphs
	4.2 Low-Diameter Decomposition for Multiple Edge Classes

	5 Parallel Low-Stretch Spanning Trees and Subgraphs
	5.1 Low-Stretch Spanning Trees
	5.2 Low-Stretch Spanning Subgraphs
	5.2.1 The First Improvement
	5.2.2 The Second Improvement

	6 Parallel SDD Solver
	6.1 Parallel Construction of Solver Chain
	6.2 Parallel Performance of Solver Chain
	6.3 Optimizing the Chain for Depth

	7 Conclusion

