
An Exploratory Study on
Functional Size Measurement based on Code

Hennie Huijgens
Delft University of Technology and
Goverdson, Delft, The Netherlands

h.k.m.huijgens@tudelft.nl

Magiel Bruntink
Software Improvement Group
Amsterdam, The Netherlands

m.bruntink@sig.eu

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
Arie.vandeursen@tudelft.nl

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

Amsterdam, The Netherlands
storm@cwi.nl

Frank Vogelezang
Ordina and COSMIC

Nieuwegein, The Netherlands
frank.vogelezang@ordina.nl

ABSTRACT
In this paper we explore opportunities, challenges, and obstacles
that Functional Size Measurement (FSM) experts assume to be in
automatically derived functional size, directly from the software
project code itself. We designed a structured survey, that was an-
swered by 336 FSM specialists. A majority of the respondents con-
sider FSM to be an important tool for decision making. No
indications are found for any perceived impact of agile
methodology on the difficulty of applying FSM. Respondents
overall think of automated FSM as important, but also difficult to
realize. 54% of the respondents think that automated FSM will help
measurement specialists, while 44% thinks that it will help decision
makers too. The most preferred FSM method for automation is
COSMIC (25%), followed by IFPUG (21%) and Nesma (16%).
Respondents perceive automated FSM to be most suitable for
baselining, benchmarking, and maintenance and legacy purposes.

CCS Concepts
• General and reference ➝ Cross-computing tools and
techniques ➝ Measurement.

Keywords
Functional Size Measurement, FSM, automated FSM, Function
Point Analysis, FPA, IFPUG, Nesma, COSMIC.

1. INTRODUCTION
Functional Size Measurement (FSM) has been widely accepted for
decades as an early predictor of cost, duration and quality of
software activities. FSM creates a context for software
measurement based on the software’s business value [1]. Among
other attributes of software, size is one of the most significant [2].

At the same time FSM is accompanied by many limitations due to
the manual counting effort needed, the often poor availability of
reliable and correct functional documentation, and the sometimes

confusing translation of objective counting standards to the unruly
practice in industry [3] [4].

The second of the four values mentioned in the Agile Manifesto [5]
is “working software over comprehensive documentation”. Alt-
hough its authors added the disclaimer “that is, while there is value
in the items on the right, we value the items on the left more”, an
often seen effect in agile practice is that the availability of a
comprehensive set of reliable and correct functional design
artefacts is simply missing. Meyer [6] labels the “depreciation of
upfront tasks”, including functional design activities as “the
undisputable prize winner of the bad and the ugly of agile ap-
proaches”. Yet how to perform FSM without reliable and available
functional design artefacts?

The absence of reliable artefacts is not exclusively related to the
agile domain. In fact, the shift towards agile approaches reveals a
major shortcoming of FSM. The major source for FSM is a set of
functional design artefacts. Thus low quality or bad availability of
those artefacts will cause low quality FSM.

From this, we conclude that software measurement experts have a
difficult time once companies go agile. This is particularly prob-
lematic when functional size measurement is used to normalize
software activities, i.e., when size is used for estimation purposes
or for benchmarking the performance of finalized software deliv-
eries.

Summarizing we hypothesize that measurement experts face a
dilemma where on one hand software companies recognize the
need for FSM as a reliable tool for decision making on software
investments. Yet on the other hand the counting process is experi-
enced by software engineering practitioners as unreliable and time
consuming due to a subjective element in interpretation of counting
guidelines and the manual processing of sets of low quality func-
tional design artefacts.

With this thought in mind, we raise the research question “What do
Functional Size Measurement experts assume to be the opportuni-
ties, challenges, and obstacles in deriving functional size directly,
and in an automated way, from the software project code itself?”

This paper is organized in the following way. Section 2 chalks out
the backgrounds and related work on FSM. In Section 3 we
describe our research method. The results are outlined in Section 4.
Finally, Sections 5 and 6 include discussion, limitations, and threats
to validity and conclusions and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICSSP'16, May 14-15, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4188-2/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2904354.2904360

2016 IEEE/ACM International Conference on Software and System Processes

 56

2. BACKGROUND AND RELATED WORK
FSM origins from function point analysis (FPA), designed by Al-
brecht in 1979 [7] to estimate size of software delivery by means of
user functionality. FSM is based on the complete set of functional
requirements of a software project or a software system. An exten-
sive overview of FSM can be found in [2] [1] and [4].

FSM is an industry standard to measure size of software en-
gineering activities. With ISO/IEC 14143 as an umbrella standard,
five FSM methods are certified by ISO as an international standard:

1. ISO/IEC 19761:2011: COSMIC FSM method [8];
2. ISO/IEC 20926:2009: IFPUG FSM method [9];
3. ISO/IEC 20968:2002: MkII FPA FSM method [10];
4. ISO/IEC 24570:2005: Nesma FSM method version 2.1 [11];
5. ISO/IEC 29881:2010: FiSMA FSM method version 1.1 [12].

Three of the above mentioned ISO standards are commonly used:
IFPUG, COSMIC, and especially in The Netherlands Nesma. In the
remaining of this study we focus at these. Although IFPUG and
Nesma counting rules are often assumed to be equivalent, we
decided to use both standards in our study. The main reason for this
is that we focus at the Nesma (detailed) method, but also at the
additional counting guidelines for the so-called estimated approach
(a high level approach where all logical files are counted with
complexity level low, and all user transactions are counted with
complexity level average) [11]. The counting rules for these stand-
ards are maintained by three FSM associations: The International
Function Point User Group (IFPUG), the Netherlands Software
Measurement Users association (Nesma), and the Common
Software Measurement International Consortium (COSMIC).

Automated FSM based on the IFPUG method was inventoried in a
1996 software tool market survey [13]. It mentions eight tools that
measure FPs directly from functional requirements models (e.g.
data flow diagrams, entity-relationship diagrams, or object
models), but their accuracy has not been independently validated
and they provide no insight in applied measurement algorithms.
Other efforts on automated FSM on IFPUG counting rules are a
framework based on a to be build slicing tool for automated
counting of IFPUG function points in COBOL source code [14].
More recently, the Object Management Group (OMG) developed a
standard on Automated Function Points (AFP)based on the IFPUG
method [15], that is relatively widely supported in industry, among
others by CAST Software tools [16] [17]. The OMG approach is
analysed and discussed in [18].

Automated generation of functional size based on design artefacts,
such as UML models [19] [20] [21] [22], OO models [23] [24], or
user interface formats [25], of which a majority is focused at the
COSMIC method [26] [27] [28]. An overview of procedures that
use conceptual models as basis for functional size is given in [29].
Practical implementations of automated COSMIC FSM based on
functional design artefacts are described in [30] and [31].

With regard to what FSM method to use, Živkovič et al. [4] argues
that MK II has some advantages compared to IFPUG, notably when
a lot of DETs are present. However, both methods performed
poorly in the case of real-time applications and system software;
COSMIC gives better results with a higher number of FPs [4].

3. RESEARCH METHOD
In this section we describe our research questions and the method
that we applied for our study.

3.1 Research Questions
Our examination of existing literature revealed that no open source
solution for automated FSM is available. A limited number of -
poorly documented - implementations of AFP is available in indus-
try, including a commercial solution (CAST) that delivers FPs
based on IFPUG counting rules. The applicable algorithm is partly
documented in the OMG standards on automated FSM [15]. At the
same time agile is changing the world of software developers. Its
rapid stream of iterations and changing focus from estimation
towards analysis asks for measurement support tools that are code-
based instead of design-based and deliver fast and reliable func-
tional size measures.

This study is a first, exploratory step in possible future research on
automated FSM. Our goal is to help define a long-term vision on a
solution, or a series of solutions, to automatically derive FSM from
source code written in a number of widely used computer lan-
guages. A to be expected side-effect of our research is the creation
of a comprehensive set of functional design artefacts of a software
system or a software project that is automatically derived from its
source code, however future research should determine the scope
of this.

Consequently, we developed the following research questions in
order to gain an in-depth understanding of the working practices
and challenges of FSM specialists and opportunities with regard to
automation of FSM based on code:

RQ1 Is FSM (still) considered an important decision making
tool?

RQ2 Is there any perceived impact of agile methodology on the
difficulty of applying FSM?

RQ3 To what extent is the automation of FSM considered an
important step, and to what extent is it perceived difficult
or impossible?

RQ4 To what extent are current FSM (automation) tools and
related approaches (e.g. backfiring) serving the needs to
FSM specialists?

3.2 FSM Expert Survey Design
In order to find an answer to our research questions we performed
an exploratory study among communities of FSM experts. Our
study methodology involves a quantitative survey that includes
qualitative open questions.

Protocol: We created a 25-minute survey focused at software
measurement experts in industry and in government organizations.
We ask the participants to rate their agreement with a number of
propositions on opportunities, challenges, and obstacles with
regard to automated deduction of functional size from a projects or
a systems source code, without the use of functional design
documentation. A separate Technical Report [32] gives a compre-
hensive inventory of survey questions and options, yet the follow-
ing overview summarizes the survey:

1. The survey collects demographic information and some basic
understanding of the professional background of participants
(type of organization, main role, experience level in FSM,
membership of FSM-communities, certification for FSM-
methods).

2. In what measure do you agree with the following statements
on the overall importance of FSM? The two statements were
randomized. Besides ratings on a 1-5 Likert scale we ask the
participants to add free format text as an explanation of their
perceptions:

57

a. Functional Size Measurement is an important tool for de-
cision makers on software projects.

b. Agile software development hinders the preparation of
good and reliable FSM.

3. What factors were involved in your own organization that
contributed to success or failure of projects that used FSM in
an agile context? (Free format text question).

4. Which of the following approaches related to FSM do you use
in practice? (Select all that apply).

5. Which of the following FSM methods would you rate as most
suitable for automation based on source code (IFPUG, Nesma,
COSMIC, commercial or self-developed tools, backfiring)?

6. To what extent do you agree with the following statements?
See Table 1 for an overview of the seven statements. The state-
ments are randomized. Besides ratings on a 1-5 Likert scale
we ask the participants to add free format text as an
explanation of their perceptions.

7. For what purposes do you think Automated FSM based on
Code is most suitable? For what purposes do you think Auto-
mated FSM based on Code is not suitable? (Free format text).

Participants: We recruited, in close cooperation with the applica-
ble boards, a range of measurement specialists that are connected
to three major associations in the field of FSM: IFPUG, Nesma, and
COSMIC.

3.3 FSM Expert Study Analysis
We examine 1-5 Likert distributions for the respondent set as a
whole and for a number of subsets by using a Wilcoxon rank-sum
test. We compute the mean and the standard deviation for each

1 http://qualyzer.bitbucket.org.

question that is based on a 1-5 Likert scale. Subsequently we calcu-
late indicators that might help us to interpret the results of the
survey (see Table 1):

• Top-Box: the percentage respondents that strongly agreed.

• Top-2-Box or the percent agree; the percentage respondents
that agreed or strongly agreed.

• Net-Top-2-Box; the percentage respondents that chose the top
2 bottom responses subtracted from the top-2 top responses.

• Coefficient of Variation (CV); also known as relative standard
deviation; the standard deviation divided by the mean. Higher
values indicate higher variability.

Where the first three are measures of the central tendency, CV is a
measure of variability; we use it in addition to the other approaches.
In order to examine whether the free format text resulting from the
survey confirms observations from the quantitative analysis we
code the free text from the survey using Qualyzer1.

3.4 Demographics of Survey Respondents
An invitation letter for our survey was sent by the boards of IFPUG,
Nesma and COSMIC to people in their mailing lists. Besides that,
we asked FSM specialists to answer the survey via social media.
The survey has been completed by 336 respondents from 40
different countries (see Figure 1). Not all survey questions were
answered by all respondents. However, for 336 respondents enough
answers were applicable to include them in the analysis. The
countries from which most completed surveys have been received
are The Netherlands (53 respondents), United States (46), Brazil
(43), Italy (38), Mexico (25), and India (23).

Figure 1. Overview of survey respondent’s demographics. The size of the circles indicates the number of respondents.

58

Respondents have different organizational backgrounds. Most
(39%) work for Information and Communication companies, 13%
perform professional, scientific and technical activities, and 10%
come from education. Respondents fulfil different roles. Most
(29%) work as an ICT Professional - Support (including Measure-
ment and Analysis). 27% works as an ICT Professional - Software
and Applications Development and Analysis. 8% works as a teach-
ing professional, while a same percentage works as a researcher.
14% of the respondents have a role as a manager, where we assume
these to be decision makers with regard to our further analysis.

With regard to their level of experience the survey indicates that
respondents tend to be involved in FSM for a longer time. 41% is
involved in FSM for more than 10 years, 21% for 6 to 10 years,
while only 16% is a starter in the field of FSM. We included data
of all respondents – whether experienced or not in FSM – in our
analysis, but we specifically looked at differences between both
groups.

244 Of the respondents (73%) are a member of one or more FSM
communities, such as IFPUG (54%), COSMIC (26%), or Nesma
(20%). A limited number of respondents are a member of other
functional size-related communities, such as Gartner, CAST,
GUFPI-ISMA, DASMA, SiFPA, ASSEMI, or ISBSG. Of the
group of 336 respondents 183 (54%) are certified for one or more
FSM-methods; either COSMIC-CCFL (47), IFPUG-CFPP (19),
IFPUG-CFPS (116), or Nesma-CFPA (25).

4. RESULTS
This section presents the results of our exploratory survey among
FSM specialists. When quoting survey respondents, we refer to the
individual contributor using a [RX] notation, where X is the
answer’s ID. We present codes resulting from coding open-ended
answers as lists with the percentage of each code between brackets.
Survey results are summarized in Table 1.

4.1 RQ1: Importance of FSM
Not to our surprise, a vast majority of respondents (87%) agrees
with the statement that FSM is an important tool for decision
makers. A high Net-Top-2-Box of 81% in combination with a low
Coefficient of Variation of 20% indicates a shared opinion on this.
Analysis of free format text confirms this observation. Coding
resulted in the following most mentioned reasons, where the per-
centage behind each item indicates the proportion of a specific code
versus all codes applied on remarks:

1. FSM supports effort, cost, and time estimation (26%).
2. FSM supports benchmarking (20%).
3. FSM supports decision making (19%).
4. FSM is objective (15%).
5. FSM enables reliable planning and budgeting (8%).

Many respondents emphasize their opinion that software size is the
single most important factor in software cost estimation, and that
FSM is the only and best method to count software size: “FSM
methods supply objective size of the project, not influenced by im-
plementation technology or team experience” [R244]. “Functional
Size is excellent base for Total Cost of Investment and Total Cost
of Ownership estimation” [R085]. “Today Functional Points is the
better and most structured measurement method to projects in
general” [R030]. “When using other people's money, it's important
to have some capability of telling them what it might cost” [R012].

As Table 2 shows, respondents of different sub-selections (e.g. cer-
tified or non-certified respondents, respondents with a business, or
an IT role, respondents that are a member of IFPUG, Nesma, or
COSMIC) do overall agree on this statement; the relatively low var-
iance indicates that the means of each sub-selection are closely
within one range.

Table 1. An overview of the overall results of the rating questions in the survey.

Question

Likert
Distri-
bution

Number of
respon-
dents Mean

Percent
Agree Top-Box

Net-Top-
2-Box

Coefficient
of

Variance

Functional Size Measurement is an important tool for decision
makers on software projects

245 4.27 87% 47% 81% 20%

The tool(s) that I use for Functional Size Measurement satisfies
my company’s needs

56 3.64 59% 21% 45% 28%

Automated derivation of <name of FSM-method> directly from
source code is difficult

211 3.54 50% 21% 36% 30%

Automated derivation of <name of FSM-method> directly from
source code will help measurement specialists

211 3.36 54% 12% 33% 33%

Automated derivation of <name of FSM-method> directly from
source code is important

211 3.20 42% 9% 21% 33%

Automated derivation of <name of FSM-method> directly from
source code will help decision makers on software projects

211 3.19 44% 9% 20% 34%

Agile software development approaches hinder preparation of
good and reliable functional size measurements

245 2.69 22% 4% -20% 40%

Backfiring is a reliable measurement tool for conversion of
Lines of Code data into Functional Size data

39 2.69 23% 3% -23% 37%

Backfiring is a reliable measurement tool for conversion of
Functional Size data into Lines of Code data

39 2.54 23% 3% -28% 44%

Table is sorted by Mean. When in a question the variable <name of FSM-method> is included, the applicable name of the FSM-method selected as ‘most suitable for automation’
was shown. Column ‘Likert Distribution’ shows a graph of the distribution on a 1-5 point Likert scale for each question with from left to right the values ‘Strongly disagree’,

‘Disagree’, ‘Neutral’, ‘Agree’ and ‘Strongly agree’.

59

4.2 RQ2: Impact of agile on FSM
Our assumption that agile delivery models tend to hinder FSM is
not confirmed by a majority of the respondents. Our assumption
that, due to the assumed depreciation of upfront tasks, a lack of
proper design documents blocks reliable FSM seems not true. Alt-
hough more respondents do disagree than agree on this (Net-Top-
2-Box is -20%), a high CV score (40%) indicates different (and
many neutral) opinions: “Agile is a development approach like any
other” [R066]. Analysis of the free format text resulted in the
following most mentioned reasons by respondents that agree on the
statement that agile hinders FSM:

1. Poor documentation in agile (10%).
2. Open scope and changing requirements (6%).
3. Short cycle of agile does not fit with FSM (3%).
4. FSM fits waterfall better (3%).
5. Developers do not like disturbance for FSM (3%).

The free format text supports that FSM fits with agile, yet only
when performed after finalization of a sprint and not for estimation
purposes: “it all depends when you count a piece of functionality.
If a piece of functionality is changed frequently, there might be
something wrong with the requirements. If at end of a project or
major release, then okay” [R016]. Other respondents did agree
with the fact that agile and FSM do not always fit together: “No
detailed documentation system requirements traceability becomes
quite costly due to the speed of evolution of the system's features to
be measured” [R020]. “The experience we had with software de-
velopment using agile approach to government was terrible. All
artefacts produced were disapproved by the team of quality
assurance and the customer” [R037].

The following reasons against the statement that agile development
hinders FSM were mentioned by opponents:

1. FSM is possible in agile when implemented properly (28%).
2. FSM is independent from a development method (14%).
3. Documentation is a maturity issue (7%).
4. Good experience with FSM and agile (6%).
5. FSM is possible without detailed documentation (3%).

“As long as requirements are clear and scope is defined you can
get a functional size measurement; maybe not so perfect but close
enough” [R005]. “It depends on the maturity of the staff in docu-
menting what is necessary to give a functional view. The staff also

has to think functionally. It is better when you have business
specialist in the staff, not only technical professionals” [R026].

In order to better understand the backgrounds of respondents an-
swers with regard to the application of FSM in combination with
agile development, we asked them “What factors were involved in
your own organization that contributed to success or failure of pro-
jects that used Functional Size Measurement in an agile context?”
Negative factors that were mentioned are ‘FSM is not applied in
agile or with many problems’, ‘limited functional documentation’,
and ‘limited knowledge and resistance in agile teams against FSM’.
“FSM is too much related to waterfall” [R080]. “Lack of
awareness that productivity measurement is important to use for
new bids” [R082]. “need to keep a close watch on the requirements
which are part of multiple sprints and count the requirements only
once” [R098].

Positive factors are the actual use of FSM in agile, many examples
of success factors yet no umbrella aspects; ‘estimate scope upfront’
and ‘monitor progress after sprint’; and ‘commitment of upper
management’. “Rigorous process for requirements management
and measurement based retrospectives connected to unit pricing
(cost per FP)” [R075]. “Mapping a user story to a functional arte-
fact” [R169]. “Functional size is a good basis to establish project
budgets. Even in an agile approach one has to decide on the
budgets required to end up with a set of useful products” [R191].

A relatively low variance in Table 2 for this research question indi-
cates that overall respondents from sub-selections did agree on their
opinions.

4.3 RQ3: Automation of FSM
In order to gain insight into the backgrounds of RQ3 ‘To what
extent is the automation of FSM considered an important step, and
to what extent is it perceived difficult or impossible?’, we asked the
respondents to give their opinion on five aspects of automation.

4.3.1 Preferred FSM method for automation
We asked the respondents “Which of the following Functional Size
Measurement methods would you rate as most suitable for auto-
mation based on source code?” The FSM method that apparently is
preferred for automation by most respondents is COSMIC; 25% of
the respondents opted for this method. IFPUG was chosen second
best with 21%. Nesma was picked last with 16%, of which 14%
was labelled at the so-called estimated approach (a high level
approach where all logical files are counted with complexity level
low, and all user transactions are counted with complexity level
average). 34% of the options selected were of the label “Other”. In
the free format text, the following clarifications where given: any
option, backfiring, CAST, FFPA Gartner, IFPUG estimated
approach, OMG, and Simple Function Points (22%). 9% of the
respondents opted for “none”, indicating that they did not believe
that automation is preferred or possible: “I believe that automation
from source code is so highly dependent on programming styles as
to make it unsuitable for general use” [R243]. 7% indicated not to
be able to answer this question: “Cannot judge at this point”
[R065], “I don't know any, but I start with COSMIC proximately”
[R139].

In the following survey questions, that were performed in a ran-
domized order, the respondents were asked to rate questions in
relation to the FSM method that they rated as most suitable in RQ3.

4.3.2 The importance of automated FSM
A majority of respondents is neutral on the questions whether au-
tomated FSM is important. 42% agrees on this statement, yet

Table 2. Variance of Respondents Answers.

Research Question Variance

RQ4 - Satisfied with FSM Tools? 0.1520

RQ4 - Is backfiring reliable? (FSM to LOC) 0.1277

RQ4 - Is backfiring reliable? (LOC to FSM) 0.0671

RQ3 - Is automated FSM difficult to realize? 0.0608

RQ3 - Does automated FSM help decision makers? 0.0584

RQ3 - Is automated FSM important? 0.0506

RQ3 - Does automated FSM help FSM specialists? 0.0421

RQ1 - Is FSM important? 0.0228

RQ2 - Does agile hinder FSM? 0.0152

Table is sorted by Variance. Variance is calculated for each research question on the
means of the following sub-selections of respondent answers: certified, non-certified;

role business, IT, and other; member IFPUG, Nesma, COSMIC; and preference
IFPUG, Nesma, COSMIC, and other.

60

apparently many are uncertain (neutral) about this looking at the
low Net-Top-2-Box and high Coefficient of Variation scores.
Analysis of free format text revealed the following most mentioned
reasons why automated FSM is important:

1. More reliable than backfiring (17%).
2. Will help decision making (13%).
3. Will be faster (12%).
4. More reliable and accurate (9%).
5. Saves manual effort (6%).

We assume that the rightly or wrongly expected fact that auto-
mation always leads to “faster, better, and more reliable” might
play a role here. In a way the answers might indicate somewhat
false expectations: “It will be important if it is accurate” [R065].
“The time and cost of function point counting is always an issue.
Reducing this would be a big help” [R121]. The following most
mentioned reasons illustrate why respondents are neutral on
automated FSM or assume it not to be important:

1. Questions on the added value of automated FSM (10%).
2. Accuracy is an issue (9%).
3. Doubts on whether automated FSM is feasible (6%).
4. FSM should not be derived from technical size at all (5%).
5. Automated FSM is not useful for estimation (to late) (4%).

As mentioned before, not all respondents were convinced of the
idea of automation of FSM based on code: “Who cares after the
facts?” [R185]. “It could be false” [R128]. “It is important but not
from source code” [R100]. A relatively low variance (see Table 2)
indicates that respondents in sub-selections more or less agreed on
the outcomes with regard to this research question.

4.3.3 Is automated FSM difficult to realize?
In line with the results on importance of automated FSM a vast
majority of respondents (50%) expects it to be difficult, while many
are neutral on the question whether this idea will be difficult. The
following most mentioned reasons illustrate why respondents
assume automated FSM to be difficult or why they are uncertain
(neutral) about this statement:

1. Functional and technical are different views (26%).
2. Complexity and variation in source code (14%).
3. Large number of programming languages (10%).
4. Difference in technologies, architectures, and skills (10%).
5. Doubts on accuracy and reliability (6%).

Several difficulties were foreseen here, where many are related to
difficulties related to translation of technical items to functional
objects: “Automation of counting from the COSMIC would involve
the identification of functional processes and objects of interest,
that can be considered hard to identify by their nature “stochastic”
[R133]. “Because Nesma is functionally oriented and not
technically, as in source code” [R012]. Others relate to quality of
source code: “Because of the poor quality of the code source. I
think there may be a large deviation of the actual size and derived
from source code” [R132]. And some just think it is impossible to
do; “I think it can't be done” [R112].

While it might be clear from Table 1 that not many respondents
disagreed with the above statement it is remarkable that still 13%
states that automated FSM can be achieved without major diffi-
culties. “The structure of COSMIC is similar to the structure of
code” [R053]. “A tool has been proposed for the C language at
ESTACA” [R022]. “There are tools for converting source code to
UML; from that you can generate new code” [R235].

Table 2 shows a relatively high variance, indicating respondents in
different sub-selections did not all agree on this question. Within
members of different FSM communities (IFPUG, Nesma, and
COSMIC) relatively large differences occur (see Figure 2). Ap-
parently COSMIC members judge automation of FSM based on
code to be less difficult than both Nesma and IFPUG members.
Looking at differences between roles, we notice that respondents
with a business role apparently think that automation is easier than
respondents with an IT or other role. Finally, it shows that certified
respondents think that automation is more difficult than non-
certified respondents do.

A remark is in place with regard to the assumed difficulty of auto-
mation. Within the scope of this exploratory study we did not
analyse any technical insights on the actual difficulties behind such
an automation (except the experts’ opinions that this is difficult).

4.3.4 Does automated FSM help?
A bit more than half of the respondents (Top-2-Box 54%) think that
automated FSM will help measurement specialists. Less than half
of the respondents (Top-2-Box 44%) think that it helps decision
makers. Many respondents are neutral on both aspects, a minority
does not agree with these statements. A strong positive correlation
is found between these statements and ‘Automated FSM is im-
portant’ (see Table 3). We assume that respondents that rate
automated FSM as important do so because they think it helps both
measurement specialists and decision makers. Analysis of the free
format text shows that respondents mentioned the following rea-
sons why automated FSM will help measurement experts:

Figure 2. Boxplots on different sub-selections of respondents with regard to the question
‘Automated derivation of <preferred method> directly from source code is difficult’.

61

1. Faster and cheaper measurements (23%).
2. Improves the quality of measurements (11%).
3. Supports baselining and benchmarking (10%).
4. Measurement experts focus on exceptions and learning (10%).
5. Compare and validate estimations and realization (8%).

Alike the earlier question on importance of automated FSM, we as-
sume that referring to automation as such, leads to expectations that
FSM will be faster, better, and cheaper by default: “Measurement
will be very fast and easy to do” [R304]. Although, comments in-
dicate that automation will be a big help for experts: “Measuring
COSMIC at a detailed level is cumbersome work. If this part can
be automated, that would be great news for measurers” [R053].
“Overcomes one of the biggest barriers to entry - allows companies
with limited resources (i.e., no Certified Function Points Special-
ists, limited budget) to size their portfolio quickly and easily”
[R260]. “If automated derivation means that more benchmarking
will be done, it would give us much more information on realized
projects” [R267]. With regard to respondents arguing against the
above statement: 9% expect quality issues and 6% has doubts
whether automated FSM will help measurement specialists in any
way: “From my numerous years of experience and after reviewing
tools that claim to automate the counting of Functional Size, I have
found they are unreliable and not accurate” [R157]. The following
reasons were mentioned with regard to the question whether
automated FSM helps decision makers:

1. Faster and cheaper measurements (21%).

2. Enables better decision making (13%).
3. Supports baselining and benchmarking (13%).
4. Evolutionary maintenance in agile environments (11%).
5. Improves quality of measurements (4%).

Arguing against the statement that automated FSM helps decision
makers, 13% of the respondents mention that it does not support
upfront estimation due to the fact that no code is available at that
stage: “It is most likely that FSM should be done before source code
exists” [R096]. “okay for baseline assessment” [R121]. 12%
expects quality issues: “I doubt if it's reliable enough for
measurement specialists” [R112] “Won't be available early on
when decisions need to be made” [R242]. 5% doubts whether au-
tomated FSM will help decision makers in any way.

4.3.5 Purposes of automated FSM
We asked the respondents ‘For what purposes do you think Auto-
mated Functional Size Measurement based on Code is most
suitable?’ Analysis of free format text revealed the following as-
pects where automated FSM is expected to be successful.

1. Application and portfolio sizing (baseline) (23%).
2. Build historical database and benchmarking (16%).
3. Supports maintenance and legacy (15%).
4. Support (large-scale application) estimation (13%).
5. Supplier management and outsourcing (7%).

As the inventory shows, most mentioned were aspects related to
baselining applications or portfolios as a whole, where we assume
this to be closely related to the second aspects benchmarking and
the third with regard the suitability for maintenance and legacy.
“All purposes for which completed applications are available;
application portfolio sizing, application management contracting,
building historical performance data of your own organization”
[R089]. “Application sizing for Maintenance assessments” [R209].
“Baseline estimation for big amounts of source code which have
never been measured before” [R299]. “Legacy systems without
documentation” [R047]. A number of respondents indicate that
automated FSM can support estimations. Although, most of them
emphasize the purpose for existing or very large systems: “Very
fast estimations for very big projects” [R144]. “Want to estimate
on the project size of an existing system” [R263]. Surprisingly
enough some respondents see automated FSM as additional to
manual counting: “As a second opinion in addition to a manual
count” [R274].

Secondly, we asked ‘For what purposes do you think Automated
Functional Size Measurement based on Code is not suitable?’ Free
text analysis resulted in some findings, although not many aspects
were mentioned.

1. Pre-build estimation (42%).
2. Detailed FSM calculations (16%).
3. Productivity analysis afterwards (16%).
4. Benchmarking (11%).
5. Accurate and consistent FSM (11%).

Where large scale application estimation is perceived to be a
suitable purpose for automated FSM, the opposite is the case for
upfront estimation, since no code is available at that moment: “For
estimated measurements before code is available” [R197]. A
number of respondents mentioned that automated FSM is not to be
used in contract negotiations where detailed FSM is obliged.
“Good estimations with enough detail to calculate the final effort

Table 3. Matrix with test results of association between paired
samples, using Kendall’s tau Rank Correlation.

 A
gi

le
 h

in
de

rs

A
ut

om
at

io
n

im
po

rt
an

t

A
ut

om
at

io
n

di
ff

ic
ul

t

A
ut

om
at

io
n

w
il

l h
el

p
sp

ec
ia

li
st

s

A
ut

om
at

io
n

w
il

l h
el

p
de

ci
si

on
 m

ak
er

s

C
ur

re
nt

 to
ol

 s
at

is
fa

ct
or

y

B
ac

kf
ir

in
g

re
li

ab
le

 (
co

de
 to

 F
S

M
)

B
ac

kf
ir

in
g

re
li

ab
le

 (
F

S
M

 to
 c

od
e)

FSM importance -0.28
(0.00)

0.04
(0.58)

0.32
(0.00)

-0.12
(0.08)

0.05
(0.50)

0.20
(0.15)

-0.06
(0.73)

0.01
(0.97)

Agile hinders -0.17
(0.01)

-0.04
(0.53)

-0.07
(0.33)

-0.11
(0.11)

-0.19
(0.16)

-0.17
(0.30)

-0.11
(0.53)

Automation
important

 -0.24
(0.00)

0.76
(0.00)

0.80
(0.00)

-0.01
(0.97)

0.36
(0.02)

0.40
(0.01)

Automation difficult -0.31
(0.00)

-0.18
(0.01)

0.07
(0.62)

-0.30
(0.10)

-0.16
(0.34)

Automation will
help specialists

 0.80
(0.00)

-0.03
(0.80)

0.27
(0.10)

0.21
(0.20)

Automation will
help decision makers

 0.03
(0.80)

0.19
(0.25)

0.26
(0.09)

Current tool
satisfactory

 -0.28
(0.21)

-0.25
(0.26)

Backfiring reliable
(code to FSM)

 0.80
(0.00)

The table above shows results from a test of association between paired
samples of the survey results, using Kendall’s tau Rank Correlation. The

overview shows for each test the correlation coefficient and between
brackets the p-value. A green color indicates samples that show a strong

positive and significant linear relationship.

62

in fixed price projects” [R144]. “It is not suitable when it´s neces-
sary to have a detailed count. And this detailed count will be used
in the financial part of the project (like cost)” [R108]. Finally, it
was mentioned that automated FSM is unsuitable for benchmarking
purposes and for productivity analysis. “Automated FSM has no
value for benchmarking. The result of the count is too much
dependent on coding standards, architecture and other technologi-
cal aspects that will vary over the companies” [R274]. “It will not
be compatible with current IFPUG standards so separate bench-
marking is required” [R231]. “Measuring the success of a project”
[R253].

4.4 RQ4: Backfiring and FSM Tools
Both backfiring in the meaning of calculation of Lines-of-Code into
Functional Size and calculation of Functional Size into Lines-of-
Code are rated by a vast majority of the respondents as unreliable.
Only 23% agree on the statements that say that backfiring is
reliable. However, a high Coefficient of Variation for both state-
ments indicate that a relatively large number of respondents agrees
with these statement too, indicating different opinions. A strong
positive correlation is found between both statements (see Table 3).
Further analysis of the free format text revealed the following most
mentioned reasons with regard to backfiring:

1. Unreliable due to high margin of error (32%).
2. Unreliable due to differences in programming styles,

languages, architectures (28%).
3. Can be used within one domain (24%).
4. Can be used but is not reliable (16%).

Although many respondents do rate backfiring as unreliable, we
notice that a relatively high variance score for both research
questions indicate that respondents from different sub-selections do
disagree on these statements (see Table 2). When looking at the
boxplots in Figure 3 it shows that relatively large differences occur
between all sub-selections, although the relatively low number of
answer indicates low significance too. Apparently respondents that
are not certified, and members of IFPUG or with a preference for
IFPUG for automation do think easier on the reliability of
backfiring than others. Respondents with a role other than business
or IT, including respondents with a research background, are most
condemned on backfiring: “Due to wide variation in completed
sizes” [R099], and “Inaccurate, too much influence from the
programming style” [R197].

In spite of the overall feeling of non-reliability of backfiring, it is
used in practice, with mixed results: “We are doing this, but I think
Automated Sizing using Cosmic would work better. More formal,
comparable outside our own company” [R214]. “From experience

I now that coding standards and architecture variation will cause
significant differences in conversion factors” [R284].
We see an interesting link between both statements on backfiring
with the statement on ‘the tool(s) that I use for FSM satisfies my
company’s needs’. A majority of respondents agrees with this: The
Top-2-Box is 59%. In a way this surprizes us because many
commercial measurement tools that use FSM are based on back-
firing (although, this is not mentioned by any of the respondents).
Analysis of free format text revealed that among the most
mentioned reasons why respondents are satisfied with their FSM
tools are “The tool supports estimation based on historical data”,
“Standardization, and combined with based on the OMG standard”,
“Supports (faster) decision making”, and “They are reliable and
efficient”.

The free format text reveals that relatively many respondents use
self-made tools that support reporting on FSM and keeping track of
data: “availability of historical data” [R269]. “Complexity based
estimation based on historical references” [R095]. “We do have
good tools for documenting the FSM and reuse them” [R242]. Oth-
ers mention to be satisfied with commercial tools: “Commercial
tool that is based on OMG AFP standards” [R089]. “I use the
Starbuilder FP tools; it allows me to manage my projects in a
professional manner.” [R039]. “The tool makes it possible to
download a free viewer, so I can send anyone my FPA file and they
can have a look at it. The only problem I see is that it is not
supporting COSMIC.” [R202]. “MeterIT-Cosmic is COSMIC
compliant” [R286]. “I use Price TruePlanning version 14.2 to pri-
marily complete software cost estimates; works well with
COSMIC” [R293]. “We use CAST Software on the delivered appli-
cation to count functional size” [R069]. “We developed internal
tools based on COCOMO and internal cost-driver models, and we
use ISBSG, SEER, and QSM SLIM” [R053].

Respondents that rate not to be satisfied with their FSM tools
mostly refer to the limited functionality and doubts on the quality
of the outcomes: “Even when we have a tool, this let made a lot of
decisions based in experience” [R167]. “Not completely because
these tools concern only the base rules of measurement process”
[R136]. “There are no good tools for FSM. Just methods. That's
not the same” [R212]. “There are no tools” [R213]. “I am not sure
we can measure FP from source code. Experience done by CAST is
not convincing.” [R324].

A remark is in place with regard to backfiring and tools. With re-
gard to the relatively low number of respondents for these questions
(39 for both questions related to backfiring, and 56 for tools), the
outcomes with regard to these aspects must be looked upon with
care. Although the survey results do not prove this, these outcomes

Figure 3. Boxplots on different sub-selections of respondents with regard to the question
‘Backfiring is a reliable measurement tool for conversion of Lines of Code data into Functional Size data’.

63

might imply that backfiring is not used much and that many com-
panies do not use tools for FSM.

5. DISCUSSION
In this Section we discuss the results of our study and compare
these with state of the art in industry, research, and education.

5.1 Threats to Validity
With regard to the extent to which the results of our study can be
generalized to other situations and to other people, we argue that
we encouraged a large variety of FSM specialists to answer the
survey. By collaborating with the three major FSM associations we
ensured a worldwide coverage of respondents from different
backgrounds, as shown in Figure 1. However, we specifically
addressed our survey to FSM specialists. Within this population our
findings might be generalized. The outcomes however, cannot be
generalized to people outside this group, such as for example
decision makers and business executives responsible for IT
investments and innovations.

5.2 Impact / Implications
Industry: Respondents that are for a major part from industry,
indicate that automated FSM based on code should be an important
tool mostly suited for baselining and benchmarking of software
applications in maintenance and legacy environments. A majority
of respondents sees COSMIC as most suited for this purpose. Based
on the survey outcomes, we speculate that a solution for automated
FSM that focusses on these requirements can help both FSM
experts and decision makers. Besides that, we assume a need for
such a solution in agile delivery environments, where speed of
delivery of many subsequent iterations can be supported by
automation of FSM based on code.

Research: Due to the assumed difficulties of automation of FSM
based on code – the difference between a functional and a technical
view, and the diversity in programming languages – we think that
a focus within the research community on translation from
functional counting rules towards technical programming code
might be of importance. With regard to future work, an ‘OMG-
like’, open-source approach focussing on the COSMIC method
seems desired and interesting, where we assume that close
cooperation with FSM communities will be valuable for translation
towards industry.

Education: Looking at the fact that only 16% of the respondents is
a starter in the field of FSM, while 41% has 10 years or more
experience, we argue that FSM needs to be promoted in a better
way among young IT professionals. Perhaps the FSM communities
can play a role in this together with educational institutions.

6. CONCLUSIONS
A vast majority (87%) of the 336 FSM specialists that answered
our survey considers FSM to be an important tool for decision
making (RQ1). No indications are found that indicate any perceived
impact of agile methodology on the difficulty of applying FSM
(RQ2). 42% of the respondents says automated FSM is important,
although many are uncertain (neutral) about this. A vast majority
of respondents (50%) expects it to be difficult, while many are
neutral on the question whether this idea will be difficult. 54% of
the respondents think that automated FSM will help measurement
specialists, while 44% thinks that it will help decision makers. The
most preferred FSM method for automation is COSMIC (25%),
followed by IFPUG (21%). Respondents think that automated FSM
will be most suitable for baselining, benchmarking, and mainte-
nance and legacy purposes (RQ3). Backfiring is perceived by a

majority of respondents as unreliable. 59% of the respondents is
satisfied with the FSM tools they are currently using (RQ4).

ACKNOWLEDGMENTS
We sincerely thank all FSM enthusiast that spent time to provide us
with valuable insights into their daily work. Once and for all their
great cooperation shows that FSM is alive and kicking. Further-
more, we thank the boards of IFPUG, Nesma, and COSMIC for
their inspiring effort in connecting us to their communities.

REFERENCES

[1] A. F. Minkiewicz, “The Evolution of Software Size: A
Search for Value,” Software Engineering Technology, vol.
March/April, pp. 23-26, 2009.

[2] C. Gencel and O. Demirors, “Functional Size Measurement
Revisited,” ACM Transactions on Software Engineering and
Methodology, vol. 17, no. 3, pp. 15:1-15:36, June 2008.

[3] E. Ungan, O. Demirörs, Ö. Ö. Top and B. Özkan, “An
Experimental Study on the Reliability of COSMIC
Measurement Results,” Software Process and Product
Measurement, no. Springer Berlin Heidelberg, pp. 321-336,
2009.

[4] A. Živkovič, M. Heričko and T. Kralj, “Empirical assessment
of methods for software size estimation,” Informatica
(Ljubljana), vol. 4, pp. 425-432, 2003.

[5] Beck et al., “Manifesto for Agile Software Development,”
2012. [Online]. Available: www.agilemanifesto.org.

[6] B. Meyer, Agile!: The Good, the Hype and the Ugly,
Springer Science & Business Media, 2014.

[7] A. Albrecht, “Measuring Application Development
Productivity,” in Joint Share Guide, and IBM Application
Development Symposium 14-17 October 1979, Monterey,
California, 1979.

[8] COSMIC, COSMIC-FFP: ISO/IEC 19761:2011 - Software
engineering. A functional size measurement method,
London: Common Software Measurement International
Consortium (COSMIC), 2011.

[9] IFPUG, IFPUG FSM Method: ISO/IEC 20926 - Software
and systems engineering – Software measurement – IFPUG
functional size measurement method, New York:
International Function Point User Group (IFPUG), 2009.

[10] UKSMA, Mk II Function Point Analysis: ISO/IEC 20968 -
Software engineering – Ml II Function Point Analysis –
Counting Practices Manual, London: UK Software Metrics
Association (UKSMA), 2002.

[11] Nesma, Nesma functional size measurement method
conform ISO/IEC 24570, version 2.1, Netherlands Software
Measurement User Association (Nesma), 2005.

[12] FiSMA, FiSMA FSM: ISO/IEC 29881 - Information
technology – Software and systems engineering – FiSMA 1.1
functional size measurement method, Helsinki: Finnish
Software Metrics User Association (FiSMA), 2010.

[13] O. Mendes, A. Abran and P. Bourque, “Function Point Tool
Market Survey,” Software Engineering Management
Laboratory, Université du Quebec à Montreal, 1996.

64

[14] V. T. Ho and A. Abran, “A Framework for automatic
function point counting from source code,” in International
Workshop on Software Measurement (IWSM), 1999.

[15] Object Management Group (OMG), “Automated Function
Points (AFP),” Formal/2014-01-03 - Version 1.0, 2014.

[16] R. Ellafi and R. Meli, “A Source Code Analysis-based
Function Point Estimation Method integrated with a Logic
Driven Estimation Method,” in SMEF, 2006.

[17] “Measuring Size & Productivity With CAST Automated
Function Points,” CAST Software, 2011.

[18] L. Lavazza, “Automated Function Points: Critical Evaluation
and Discussion,” in IEEE/ACM 6th International Workshop
on Emerging Trends in Software Metrics (WETSoM), 2015.

[19] A. Živkovič, I. Rozman and M. Heričko, “Automated
software size estimation based on function points using UML
models,” Information and Software Technology, vol. 47, no.
13, pp. 881-890, 2005.

[20] H. Diab, M. Frappier and R. St-Denis, “A formal definition
of COSMIC-FFP for automated measurement of room
specifications,” in Proc. 4th Eur. Conf. Software
Measurement and ICT Control, Heidelberg, 2001.

[21] H. Diab, F. Koukane, M. Frappier and R. St-Denis, “μ c
ROSE: automated measurement of COSMIC-FFP for
Rational Rose RealTime,” Information and Software
Technology, vol. 47, no. 3, pp. 151-166, 2005.

[22] S. Azzouz and A. Abran, “A proposed measurement role in
the rational unified process and its implementation with ISO
19761: COSMIC-FFP,” in Software Measurement European
Forum, Rome, Italy, 2004.

[23] B. Marín, O. Pastor and A. Abran, “Towards an accurate
functional size measurement procedure for conceptual
models in an MDA environment,” Data & Knowledge
Engineering, vol. 69, no. 5, pp. 472-490, 2010.

[24] N. Condori-Fernández and Ó. Pastor, “Evaluating the
productivity and reproducibility of a measurement
procedure,” Advances in Conceptual Modeling-Theory and
Practice. Springer, pp. 352-361, 2006.

[25] Z. Li, M. Nonaka, A. Kakurai and M. Azuma, “Measuring
functional size of interactive software: a support system
based on XForms-format user interface specifications,” in
IEEE Third International Conference on Quality Software,
2003.

[26] D. Ceke and B. Milasinovic, “Automated web application
functional size estimation based on a conceptual model,” in
IEEE 2015 23rd International Conference on Software,
Telecommunications and Computer Networks (SoftCOM),
2015.

[27] R. Gonultas and A. Tarhan, “Run-Time Calculation of
COSMIC Functional Size via Automatic Installment of
Measurement Code into Java Business Applications,” in
IEEE 41st Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2015.

[28] H. Soubra, L. Jacot and S. Lemaire, “Manual and Automated
Functional Size Measurement of an Aerospace Realtime
Embedded System: A Case Study based on SCADE and on
COSMIC ISO 19761,” 2015.

[29] B. Marín, G. Giachetti and O. Past, “Measurement of
functional size in conceptual models: A survey of
measurement procedures based on COSMIC,” Software
Process and Product Measurement, no. Springer Berlin
Heidelberg, pp. 170-183, 2008.

[30] H. Soubra, A. Abran, S. Stern and A. Ramdan-Cherif,
“Design of a Functional Size Measurement Procedure for
Real-Time Embedded Software Requirements Expressed
using the Simulink Model,” in IWSM Mensura, 2011.

[31] K. Lind and R. Heldal, “A model-based and automated
approach to size estimation of embedded software
components,” Model Driven Engineering Languages and
Systems, no. Springer Berlin Heidelberg, pp. 334-348, 2011.

[32] H. Huijgens, M. Bruntink, A. v. Deursen, T. v. d. Storm and
F. Vogelezang, “An Exploratory Study on Automated
Derivation of Functional Size based on Code - Technical
Report TUD-SERG-2016-007,” Delft University of
Technology, Delft, The Netherlands, 2015.

65

