Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improved QoT estimations through refined signal power measurements and data-driven parameter optimizations in a disaggregated and partially loaded live production network

Not Accessible

Your library or personal account may give you access

Abstract

Accurate quality of transmission (QoT) estimations are essential enablers for future low-margin dynamic optical network operations. However, physical parameter measurement uncertainties and other intractable signal propagation effects degrade the accuracy of QoT estimation, especially in live production networks. The recent trend of network disaggregation further exacerbates the issue, and a vendor-agnostic accurate QoT estimator is much needed. In this paper, we study Gaussian-noise-model-based QoT estimation in a large-scale disaggregated and partially loaded live production network with monitored physical layer data spanning across 8 months. We first propose refining the signal power measurements by combining the inline amplifier and optical channel monitor (OCM) power measurements, followed by estimating the gain and noise power profiles of each inline amplifier, which in turn improves QoT estimation accuracy. We further introduce an optical multiplex section and frequency bias to the analytical model to incorporate intractable location-specific and spectral effects in the network and proposed data-driven parameter optimizations to learn the biases as well as erbium-doped fiber amplifier noise figures. The (mean, standard deviation) of the QoT estimation errors were reduced from (${-}{0.1043}$, 0.6037) dB using average amplifier power and (${-}{0.7875}$, 0.6337) dB using OCM power to (${-}{0.0964}$, 0.4649) dB after input parameter refinements and were further reduced to (0.0046, 0.2377) dB with data-driven parameter optimization. The proposed methodologies are simple procedures that network operators can adopt to optimize analytical-model-based QoT estimators and/or serve as feature engineering procedures preceding machine-learning-based QoT in realistic disaggregated live production networks.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Machine learning enhancement of a digital twin for wavelength division multiplexing network performance prediction leveraging quality of transmission parameter refinement

Nathalie Morette, Hartmut Hafermann, Yann Frignac, and Yvan Pointurier
J. Opt. Commun. Netw. 15(6) 333-343 (2023)

Improving the accuracy of QoT estimation with insertion loss distribution evaluation for C + L band transmission systems

Jing Zhou, Jianing Lu, and Changyuan Yu
J. Opt. Commun. Netw. 16(1) 12-20 (2024)

Lightpath QoT computation in optical networks assisted by transfer learning

Ihtesham Khan, Muhammad Bilal, M. Umar Masood, Andrea D’Amico, and Vittorio Curri
J. Opt. Commun. Netw. 13(4) B72-B82 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.