Zusammenfassung
Die zunehmende Digitalisierung sowie die allgegenwärtige Verfügbarkeit von Daten verändern das Wirtschaftsleben, den Alltag des Einzelnen und die Gesellschaft als Ganzes. Vor diesem Hintergrund wird der Einsatz von maschinellen Lernverfahren in vielen Bereichen von Wirtschaft und Gesellschaft zum Teil kontrovers diskutiert. Mit Hilfe des Einsatzes solcher Algorithmen lassen sich beispielsweise Prognosen verbessern sowie Entscheidungen bzw. Entscheidungsprozesse automatisieren. In diesem Artikel geben wir zum einen einen Überblick über die Grundprinzipien maschinellen Lernens. Zum anderen diskutieren wir Anwendungsmöglichkeiten sowie Wirtschaftlichkeitspotenziale am Beispiel von Kundenbindungsprozessen.
Abstract
The increasing digitalization, as well as the ubiquitous availability of data, are currently transforming the economy, the lives of consumers, and society in general. In this context, the use of machine learning is often controversially debated by businesses and the public. For example, these algorithms can help improve making predictions and help automate decisions and decision making processes. In this paper, we first provide an overview of the basic concepts of machine learning and secondly, we will examine selected use cases and efficiency potentials within the customer retention processes.

Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Vgl. starke künstliche Intelligenz bzw. „Artificial General Intelligence“ (Pennachin und Goertzel 2007).
Durchführung der Studie im Jahr 2017.
Vgl. hierzu „Durchschnittliche Beratungszeit“, typische Bandbreite von 1,95–8,7 min bei Erichsen (2007).
Konservative Annahme für zwei API-Calls (Kategorisierung und Lösungsvorschlag) bedingt durch eventuelle Latenz und Verarbeitungsdauer; basierend auf Test via SAP API Business Hub (SAP 2017c).
Literatur
Amazon Developer (2017) Alexa. https://developer.amazon.com/public/solutions/alexa. Zugegriffen: 29. Okt. 2017
Apple (2017) Siri. http://www.apple.com/ios/siri. Zugegriffen: 29. Okt. 2017
Batista G, Monard MC (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5–6):519–533
Bitkom (2017) Künstliche Intelligenz verstehen als Automation des Entscheidens. https://www.bitkom.org/noindex/Publikationen/2017/Leitfaden/Bitkom-Leitfaden-KI-verstehen-als-Automation-des-Entscheidens-2-Mai-2017.pdf. Zugegriffen: 17. Sept. 2017
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Bruhn M, Hadwich K (2012) Customer Experience – Eine Einführung in die theoretischen und praktischen Problemstellungen. In: Hadwich K (Hrsg) Customer Experience. Gabler, Wiesbaden, S 3–36
Brynjolfsson E, McAfee A (2017) The business of artificial intelligence. Harvard Business Review. https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence. Zugegriffen: 29. Sept. 2017
Buckinx W, Van den Poel D (2005) Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. Eur J Oper Res 164(1):252–268
Burez J, Van den Poel D (2007) CRM at a pay-TV company: using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Syst Appl 32(2):277–288
Chesbrough H (2007) Business model innovation: it’s not just about technology anymore. Strategy Leadersh 35(6):12–17
Christensen C (1997) The innovator’s dilemma. Harvard Business School Press, Cambridge
Committee on Technology National Science and Technology Council (2016) Preparing for the future of artificial intelligence. Createspace independent publishing platform. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. Zugegriffen: 15. Okt. 2017
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Coussement K, Van den Poel D (2008) Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Syst Appl 34(1):313–327
Coussement K, Van den Poel D (2009) Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Syst Appl 36(3):6127–6134
Dahlmeier D (2017) Machine learning: making customer service operations smarter and more strategic. https://news.sap.com/machine-learning-smart-customer-service. Zugegriffen: 6. Nov. 2017
Damm W, Kalmar R (2017) Autonome Systeme. Inform Spektrum 40(5):400–408
Davenport T, Kirby J (2016) Just how smart are smart machines? MIT Sloan Manage Rev 57(3):20–25
Egle U, Keimer I, Hafner N (2014) KPIs zur Steuerung von Customer Contact Centern. In: Möller K, Schultze W (Hrsg) Produktivität von Dienstleistungen. Springer, Wiesbaden, S 505–543
Erichsen J (2007) Benchmarking – von den Besten lernen. Wiss Heute 60(2):21–31
Europäisches Parlament (2017) Bericht mit Empfehlungen an die Kommission zu zivilrechtlichen Regelungen im Bereich Robotik (2015/2103(INL)). http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A8-2017-0005&language=DE. Zugegriffen: 26. Okt. 2017
Fachforum Autonome Systeme im Hightech-Forum (2017) Autonome Systeme – Chancen und Risiken für Wirtschaft, Wissenschaft und Gesellschaft. Kurzversion, Abschlussbericht. Fachforum Autonome Systeme im Hightech-Forum, Berlin
Farquad MAH, Ravi V, Raju SB (2014) Churn prediction using comprehensible support vector machine: An analytical CRM application. Appl Soft Comput 19:31–40
Google (2017) Google now. https://www.google.com/landing/now. Zugegriffen: 29. Okt. 2017
Grace K, Salvatier J, Dafoe A, Zhang B, Evans O (2017) When will aI exceed human performance? Evidence from aI experts. arXiv:1705.08807, S 1–21
Guzella TS, Caminhas WM (2009) A review of machine learning approaches to Spam filtering. Expert Syst Appl 36(7):10206–10222
Huber AS (2016) Das Digital Enterprise nimmt Gestalt an. In: Sendler U (Hrsg) Industrie 4.0 grenzenlos. Springer, Berlin Heidelberg, S 229–243
Hung S, Yen DC, Wang H (2006) Applying data mining to telecom churn management. Expert Syst Appl 31(3):515–524
Hurwitz J, Kaufman M, Bowles A (2015) Cognitive computing and big data analytics. Wiley, Hoboken
IBM (2017) IBM Watson. https://www.ibm.com/watson. Zugegriffen: 28. Okt. 2017
Jahromi AT, Stakhovych S, Ewing M (2014) Managing B2B customer churn, retention and profitability. Ind Mark Manag 43(7):1258–1268
Kelly K (2014) The three breakthroughs that have finally unleashed aI on the world. http://www.wired.com/2014/10/future-of-artificial-intelligence. Zugegriffen: 14. Okt. 2017
Kelly JE, Hamm S (2013) Smart machines—IBM’s watson and the era of cognitive computing. Columbia University Press, New York
Kirui C, Hong LL, Cheruiyot W, Kirui H (2013) Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. Int J Comput Sci Issues 10(2):165–172
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th international joint conference of Artificial Intelligence. Bd. 2, S 1137–1143
Kruppa J, Schwarz A, Arminger G, Ziegler A (2013) Consumer credit risk: Individual probability estimates using machine learning. Expert Syst Appl 40(13):5125–5131
Litjens G, Kooi T, Bejnordi EB, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88
Mainzer K (2016) Künstliche Intelligenz – Wann übernehmen die Maschinen? Springer, München
Marsland S (2015) Machine learning: an algorithmic perspective. Taylor & Francis, Florida
McCarthy J, Minsky ML, Rochester N, Shannon CE (1955) A proposal for the dartmouth summer research project on artificial intelligence. http://jmc.stanford.edu/articles/dartmouth.html. Zugegriffen: 30. Sept. 2017
McKinsey (2017) A future that works: harnessing automation for a future that works. https://www.mckinsey.com/~/media/McKinsey/Global%20Themes/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works-Executive-summary.ashx. Zugegriffen: 12. Okt. 2017
Mitchell TM (1997) Machine learning. McGraw-Hill, New York
Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
Murthy SK (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min Knowl Discov 2(4):345–389
Ngai EWT, Xiu L, Chau DCK (2009) Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst Appl 36(2):2592–2602
Niefind F, Wiegran A (2010) Was sind Beschwerden? In: Ratajczak O (Hrsg) Erfolgreiches Beschwerdemanagement. Gabler, Wiesbaden, S 19–32
Nilsson NJ (2014) Principles of artificial intelligence. Morgan Kaufmann, Burlington
Osterwalder A, Pigneur Y (2010) Business model generation: a handbook for visionaries, game changers, and challengers. Wiley, Hoboken
Patel J, Shah S, Thakkar P, Kotecha K (2015) Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Syst Appl 42(1):259–268
Pennachin C, Goertzel B (2007) Artificial general intelligence. Springer, Berlin Heidelberg
Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
Reeves M, Ueda D (2016) Designing the machines that will design strategy. https://hbr.org/2016/04/welcoming-the-chief-strategy-robot. Zugegriffen: 30. Sept. 2017
Reinartz W, Kumar V (2003) The impact of customer relationship characteristics on profitable lifetime duration. J Mark 67(1):77–99
Reinartz W, Krafft M, Hoyer WD (2004) The customer relationship management process: its measurement and impact on performance. J Mark Res 41(3):293–305
Russell SJ, Norvig P (2010) Artificial intelligence—a modern approach. Pearson, New Jersey
SAE International (2016) SAE J3016: taxonomy and definitions for terms related to on-road motor vehicle automated driving systems
Salesforce (2017) Salesforce einstein is artificial intelligence in business technology—salesforce EMEA. https://www.salesforce.com/eu/products/einstein/overview. Zugegriffen: 27. Okt. 2017
SAP (2017a) Build your intelligent enterprise with machine learning, a case study with BASF. http://events.sap.com/sapandasug/en/session/32268. Zugegriffen: 30. Okt. 2017
SAP (2017b) Machine learning applications and platform. https://www.sap.com/products/leonardo/machine-learning.html. Zugegriffen: 24. Okt. 2017
SAP (2017c) SAP API business hub: SAP Leonardo machine learning—business services. https://api.sap.com/shell/discover/contentpackage/SAPLeonardoMLBusinessServices. Zugegriffen: 10. Nov. 2017
SAP (2017d) SAP service ticket intelligence. https://help.sap.com/viewer/934ccff77ddb4fa2bf268a0085984db0/1708/en-US. Zugegriffen: 6. Nov. 2017
Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. MIT Press, Cambridge
Schroeck M, Shockley R, Smart J, Romero-Morales D, Tufano P (2012) Analytics: the real-world use of big data. IBM Global Business Services, S 1–20
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Demis Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489
Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550:354–359
Stanford University (2017) One Hundred Year Study on Artificial Intelligence (AI100). https://ai100.stanford.edu. Zugegriffen: 17. Nov. 2017
Susto GA, Schirru A, Pampuri S, McLoone S, Beghi A (2015) Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans Ind Inform 11(3):812–819
Tamaddoni A, Stakhovych S, Ewing M (2016) Comparing churn prediction techniques and assessing their performance a contingent perspective. J Serv Res 19(2):123–141
Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9
Vallis H (2017) The art and science of reducing involuntary subscriber churn. Forrester consulting thought leadership paper [1–13MQMED], S 1–11
Verbeke W, Martens D, Baesens B (2014) Social network analysis for customer churn prediction. Appl Soft Comput 14:431–446
Wahlster W (2017) Künstliche Intelligenz als Grundlage autonomer Systeme. Inform Spektrum 40(5):409–418
Wang YF, Chiang DA, Hsu MH, Lin CJ, Lin IL (2009) A recommender system to avoid customer churn: a case study. Expert Syst Appl 36(4):8071–8075
Watson HJ (2017) Preparing for the cognitive generation of decision support. MIS Q Exec 16(13):153–169
Witten IH, Frank E, Hall MA, Pal CJ (2017) Data mining: practical machine learning tools and techniques. Elsevier, Cambridge
World Economic Forum (2016) Digital transformation of industries: digital enterprise. http://reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/files/pages/files/digital-enterprise-narrative-final-january-2016.pdf. Zugegriffen: 11. Okt. 2017
Yin S, Zhu X, Jing C (2014) Fault detection based on a robust one class support vector machine. Neurocomputing 145:263–268
Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224
Zorn S, Jarvis W, Bellman S (2010) Attitudinal perspectives for predicting churn. J Res Interact Mark 4(2):157–169
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Welsch, A., Eitle, V. & Buxmann, P. Maschinelles Lernen. HMD 55, 366–382 (2018). https://doi.org/10.1365/s40702-018-0404-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1365/s40702-018-0404-z