Skip to main content
Log in

The informatics of a C57BL/6J mouse brain atlas

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The Mouse Atlas Project (MAP) aims to produce a framework for organizing and analyzing the large volumes of neuroscientific data produced by the proliferation of genetically modified animals. Atlases provide an invaluable aid in understanding the impact of genetic manipulation by providing a standard for comparison. We use a digital atlas as the hub of an informatics network, correlating imaging data, such as structural imaging and histology, with text-based data, such as nomenclature, connections, and references. We generated brain volumes using magnetic resonance microscopy (MRM), classical histology, and immunohistochemistry, and registered them into a common and defined coordinate system. Specially designed viewers were developed in order to visualize multiple datasets simultaneously and to coordinate between textual and image data. Researchers can navigate through the brain interchangeably, in either a text-based or image-based representation that automatically updates information as they move. The atlas also allows the independent entry of other types of data, the facile retrieval of information, and the straight-forward display of images. In conjunction with centralized servers, image and text data can be kept current and can decrease the burden on individual researchers’ computers. A comprehensive framework that encompasses many forms of information in the context of anatomic imaging holds tremendous promise for producing new insights. The atlas and associated tools can be found at http://www.loni.ucla.edu/MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard, J. L., Kaufman, M. H., Dubreuil, C., et al. (1998) An internet-accessible database of mouse developmental anatomy based on a systematic nomenclature. Mech. Dev. 74, 111–120.

    Article  CAS  Google Scholar 

  • Bota, M. and Arbib M. A. (2002) The Neurohomology database: An online-KMS for handling and evaluation of neurobiological information, in A Practical Guide to Neuroscience Databases and Associated Tools. (Kotter, R., ed.) Kluwer Academic Publishers, Boston, MA. pp. 203–220.

    Google Scholar 

  • Bota, M., Dong, H. W., and Swanson, L. (2003) From gene networks to brain networks. Nat. Neurosci. 6, 795–799.

    Article  CAS  Google Scholar 

  • Bowden, D. M. and Martin, R. F. (1995) NeuroNames Brain Hierarchy. Neuroimage 2, 63–83.

    Article  CAS  Google Scholar 

  • Carson, J. P., Thaller, C., and Eichele, G. (2002) A transcriptome atlas of the mouse brain at cellular resolution. Curr. Opin. Neurobiol. 12, 562–565.

    Article  CAS  Google Scholar 

  • Franklin, K. B. J. and Paxinos, G. (1997) The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego.

    Google Scholar 

  • Gallyas, F. (1979) Silver staining of myelin by means of physical development. Neurol. Res. 1, 203–209.

    CAS  Google Scholar 

  • Ghosh, P., O’Dell, M., Narasimhan, P. T., Fraser, S. E. and Jacobs, R. E. (1994) Mouse lemur microscopic MRI brain atlas. Neuroimage 1, 345–349.

    Article  CAS  Google Scholar 

  • Hof, P. R. and Young, W. G. (2000) Comparative Cytoarchitectonic Atlas of the C57BL 6 and 129 Sv Mouse Brains, Elsevier, Amsterdam.

    Google Scholar 

  • Kahn, M. A., Kumar, S., Liebl, D., Chang, R., Parada, L. F., and De Vellis, J. (1999) Mice lacking NT-3, and its receptor TrkC, exhibit profound deficiencies in CNS glial cells. Glia 26, 153–165.

    Article  CAS  Google Scholar 

  • Nicolelis, M. A., Tinone, G., Sameshima, K., Timo-Iaria, C., Yu, C. H., and Van de Bilt, M. T. (1990) Connection, a microcomputer program for storing and analyzing structural properties of neural circuits. Comput. Biomed. Res. 23, 64–81.

    Article  CAS  Google Scholar 

  • Ourselin, S., Roche, A., Subsol, G., Pennec, X., and Ayache, N. (2001) Reconstructing a 3D Structure from Serial Histological Sections. Image Vision Comput. 19, 25–31.

    Article  Google Scholar 

  • Paxinos, G. and Watson, C. (1998) The Rat Brain in Stereotaxic Coordinates, 4th ed., Academic Press, San Diego.

    Google Scholar 

  • Paxinos, G. and Franklin, K. B. J. (2001) The Mouse Brain in Stereotaxic Coordinates, 2nd ed., Academic Press, San Diego.

    Google Scholar 

  • Rex, D. E., Ma, J. Q., and Toga, A. W. (2003) The LONI Pipeline Processing Environment. Neuroimage 19, 1033–1048.

    Article  Google Scholar 

  • Ringwald, M., Baldock, R., Bard, J., et al. (1994) A database for mouse development. Science 265, 2033–2034.

    Article  CAS  Google Scholar 

  • Rosen, G. D., Williams, A. G., Capra, J. A., et al. (2000) The Mouse Brain Library @www.mbl.org.

  • Shattuck, D. W. and Leahy, R. M. (2002) BrainSuite: an automated cortical surface identification tool. Med. Image Anal. 6, 129–142.

    Article  Google Scholar 

  • Simmons, D. M. and Swanson, L. W. (1993) The Nissl Stain, in Neuroscience Protocols, Wouterlood, F. G., ed., Elsevier, Amsterdam, pp. 93-050-12-1–93-050-12-7.

    Google Scholar 

  • Smith, B. R., Johnson, G. A., Groman, E. V. and Linney, E. (1994) Magnetic Resonance Microscopy of Mouse Embryos. Proc. Natl. Acad. Sci. U S A 91, 3530–3533.

    Article  CAS  Google Scholar 

  • Stephan, K. E., Zilles, K., and Kotter R. (2000) Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 37–54.

    Article  CAS  Google Scholar 

  • Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G. A., Young, M. P., and Kotter, R. (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1159–1186.

    Article  CAS  Google Scholar 

  • Swanson, L. W. (1998) Brain Maps: Structure of the Rat Brain, 2nd ed., Elsevier, Amsterdam.

    Google Scholar 

  • Toga, A. W. and Thompson, P. M. (1998) Multimodal Brain Atlases, in Medical Image Databases. Kluwer Academic Press, Dordrecht, The Netherlands, pp. 53–88.

    Google Scholar 

  • Toga, A. W., Santori, E. M., Hazani, R., and Ambach, K. (1995) A 3D digital map of rat brain. Brain Res. Bull. 38, 77–85.

    Article  CAS  Google Scholar 

  • Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., and Mazziotta, J. C. (1998a) Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22, 139–152.

    Article  CAS  Google Scholar 

  • Woods, R. P., Grafton, S. T., Watson, J. D. G., Sicotte, N. L., and Mazziotta, J. C. (1998b) Automated image registration: II. Intersubject validation of linear and nonlinear models. J. Comput. Assist. Tomogr. 22, 153–165.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur W. Toga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKenzie-Graham, A., Jones, E.S., Shattuck, D.W. et al. The informatics of a C57BL/6J mouse brain atlas. Neuroinform 1, 397–410 (2003). https://doi.org/10.1385/NI:1:4:397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:1:4:397

Index Entries

Navigation