Skip to main content
Log in

Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Although neuronal dynamics is to a high extent a function of synapse strength, the spatial distribution of neurons is also known to play an important role, which is evidenced by the topographical organization of the main stations of the visual system: retina, lateral geniculate nucleus, and cortex. The coexisting systems of normally placed and displaced amacrine cells in the vertebrate retina provide interesting examples of retinotopic spatial organization. However, it is not clear whether these two systems are spatially interrelated or not. The current work applies two mathematical-computational methods-a new method involving Voronoi diagrams for local density quantification and a more traditional approach, the Ripley K function-in order to characterize the mosaics of normally placed and displaced amacrine cells in the retina of Hoplias malabaricus and search for possible spatial relationships between these two types of mosaics. The results obtained by the Voronoi local density analysis suggest that the two systems of amacrine cells are spatially interrelated through nearly constant local density ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboelela, S. W. and Robinson, D. W. (2004) Physiological response properties of displaced amacrine cells of the adult ferret retina. Vis. Neurosci. 21, 135–144.

    Article  PubMed  Google Scholar 

  • Bennis, M., Versaux-Botteri, C., Reperant, J., and Armengol, J. A. (2005) Calbindin, calretinin and parvalbumin immunoreactivity in the retina of the chameleon (Chamaeleo chamaeleon). Brain Behav. Evol. 65, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Berg, M., de van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000) Computational Geometry, 2nd ed., Springer, Berlin.

  • Besag, J. (1977) Contribution to the discussion of Dr. Ripley's paper. J. R. Stat. Soc. Ser. B 39, 193–195.

    Google Scholar 

  • Bonci, D. M., de Lima, S. M., Grotzner, S. R., Oliveira Ribeiro, C. A., Hamassaki, D. E., and Ventura, D. F. (2006) Losses of immunoreactive parvalbumin amacrine and immunoreactive alphaprotein kinase C bipolar cells caused by methylmercury chloride intoxication in the retina of the tropical fish Hoplias malabaricus. Braz. J. Med. Biol. Res. 39, 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Casini, G., Rickman, D. W., and Brecha, N. C. (1995) AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J. Comp. Neurol. 356, 132–142.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet, C., Dkhissi-Benyahya, O., and Cooper, H. M. (2005) Calcium-binding protein distribution in the retina of strepsirhine and haplorhine primates. Brain Res. Bull. 68, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J. E. and Chalupa, L. M. (2000) Retinal mosaics: new insights into an old concept. Trends Neurosci. 23, 26–34.

    Article  PubMed  CAS  Google Scholar 

  • Costa, L., Da, F., and Cesar, R. M. Jr. (2001) Shape Analysis and Classification: Theory and Practice, CRC Press, Boca Raton.

    Google Scholar 

  • Costa, L., da, F., Rocha, F., and de Lima, S. M. A. (2006) Characterizing the polygonality of biological structures. Phys. Rev. E. 73, 011913.

    Article  CAS  Google Scholar 

  • Cuenca, N., Deng, P., Linberg, K. A., Lewis, G. P., Fisher, S. K., and Kolb, H. (2002) The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters. J. Neurocytol. 31, 649–666.

    Article  PubMed  CAS  Google Scholar 

  • de Lima, S. M. A., Ahnelt, P. K., Carvalho, T. O., et al. (2005) Horizontal cells in the retina of a diurnal rodent, the agouti (Dasyprocta agouti). Vis. Neurosci. 22, 707–720.

    PubMed  Google Scholar 

  • Deng, P., Cuenca, N., Doerr, T., Pow, D. V., Miller, R., and Kolb, H. (2001) Localization of neurotransmitters and calcium binding proteins to neurons of salamander and mudpuppy retinas. Vision Res. 41, 1771–1783.

    Article  PubMed  CAS  Google Scholar 

  • Diggle, P. J. (1983) Statistical Analysis of Spatial Point Pattern, Academic, New York.

    Google Scholar 

  • Diggle, P. J. (1986) Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern. J. Neurosci. Methods 18, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G. (1990) Neural Darwinism: The Theory of Neuronal Group Selection, Oxford University Press.

  • Eglen, S. J., Raven, M. A., Tamrazian, E., and Reese, B.E. (2003) Dopaminergic amacrine cells in the inner nuclear layer and ganglion cell layer comprise a single functional retinal mosaic. J. Comp. Neurol. 466, 343–355.

    Article  PubMed  Google Scholar 

  • Euler, T., Detwiler, P. B., and Denk, W. (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, R. and Straznicky, C. (1992) Immunocytochemical localization of parvalbumin and neurofilament triplet protein immunoreactivity in the cat retina: colocalization in a subpopulation of AII amacrine cells. Brain Res. 595, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, R., Lesauter, J., Banvolgyi, T., Petrovics, G., Silver, R., and Witkovsky, P. (2004) AII amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell Tissue Res. 315, 181–186.

    Article  PubMed  Google Scholar 

  • Hamano, K., Kiyama, H., Emson, P. C., Manabe, R., Nakauchi, M., and Tohyama, M. (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J. Comp. Neurol. 302, 417–424.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. and Nowinsky, W. L. (2006) Ahybrid approach to shape-based interpolation of stereotactic atlases of the human brain. Neuroinformatics 4, 177–198.

    Article  PubMed  Google Scholar 

  • Mack, A. F., Sussmann, C., Hirt, B., and Wagner, H. J. (2004) Displaced amacrine cells disappear from the ganglion cell layer in the central retina of adult fish during growth. Invest. Ophthalmol. Vis. Sci. 45, 3749–3755.

    Article  PubMed  Google Scholar 

  • Marc, R. E. and Cameron, D. (2001) A molecular phenotype atlas of the zebrafish retina. J. Neurocytol. 30, 593–654.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R. E., Liu, W. L., Kalloniatis, M., Raiguel, S. F., and van Haesendonck, E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina. J. Neurosci. 10, 4006–4034.

    PubMed  CAS  Google Scholar 

  • Moshiri, A., Close, J., and Reh, T. A. (2004) Retinal stem cells and regeneration. Int. J. Dev. Biol. 48, 1003–1014.

    Article  PubMed  Google Scholar 

  • Nirenberg, S. and Meister, M. (1997) The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 18, 637–650.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000) Spatial Tessellations, 2nd ed., Wiley, Chichester.

  • Otteson, D. C. and Hitchcock, P. F. (2003) Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res. 43, 927–936.

    Article  PubMed  CAS  Google Scholar 

  • Palanza, L., Jhaveri, S., Donati, S., Nuzzi, R., and Vercelli, A. (2005) Quantitative spatial analysis of the distribution of NADPH-diaphorasepositive neurons in the developing and mature rat retina. Brain Res. Bull. 65, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Perron, M. and Harris, W. A. (2000) Retinal stem cells in vertebrates. Bioessays 22, 685–688.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H. and Walker, M. (1980) Amacrine cells, displaced amacrine cells and interplexiform cells in the retina of the rat. Proc. R Soc. Lond. B Biol. Sci. 208, 415–431.

    Article  PubMed  CAS  Google Scholar 

  • Ramella, M., Boschim, W., Fadda, D., and Nonino, M. (2001) Finding galaxy clusters using Voronoi tessellations. Astron. Astroph. 368, 776–786.

    Article  Google Scholar 

  • Ramóny Cajal, S. (1893) Lá Retine dês Vertebrés. La Cellule, 217–257.

  • Ripley, B. D. (1976) The second-order analysis of stationary point processes. J. Appl. Probab. 13, 255–266.

    Article  Google Scholar 

  • Sanna, P. P., Keyser, K. T., Battenberg, E., and Bloom, F. E. (1990) Parvalbumin immunoreactivity in the rat retina. Neurosci. Lett. 118, 136–139.

    Article  PubMed  CAS  Google Scholar 

  • Sanna, P. P., Keyser, K. T., Celio, M. R., Karten, H. J., and Bloom, F. E. (1993) Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Res. 600, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Shaap, W. and Weygaert, R. (2000) Continuous field and discrete samples: reconstruction through Delaunay tessellations. Astron. Astrophys. 363, L29.

    Google Scholar 

  • Silveira, L. C. L., Yamada, E. S., and Picanço-Diniz, C. W. (1989) Displaced horizontal and biplexiform horizontal cells in the mammalian retina. Vis. Neurosci. 3, 483–488.

    PubMed  CAS  Google Scholar 

  • van Haesendonck, E. and Missotten, L. (1987) Displaced small amacrine cells in the retina of the marine teleost Callionymus lyra L. Vision Res. 27, 1431–1443.

    Article  PubMed  Google Scholar 

  • Wässle, H., Chun, M. H., and Muller, F. (1987) Amacrine cells in the ganglion cell layer of the cat retina. J. Comp. Neurol. 265, 391–408.

    Article  PubMed  Google Scholar 

  • Wässle, H., Grünert, U., and Rohrenbeck, J. (1993) Immunocytochemical staining of AIIamacrine cells in the rat retina with antibodies against parvalbumin. J. Comp. Neurol. 332, 407–420.

    Article  PubMed  Google Scholar 

  • Wässle, H., Dacey, D. M., Haun, T., Haverkamp, S., Grünert, U., and Boycott, B. B. (2000) The mosaic of horizontal cells in the macaque monkey retina: with a comment on biplexiform ganglion cells. Vis. Neurosci. 17, 591–608.

    Article  PubMed  Google Scholar 

  • Weruaga, E., Velasco, A., Brinon, J. G., Arevalo, R., Aijon, J., and Alonso, J. R. (2000) Distribution of the calcium-binding proteins parvalbumin, calbindin D-28k and calretinin in the retina of two teleosts. J. Chem. Neuroanat. 19, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Yan, X. X. (1997) Prenatal development of calbindin D-28K and parvalbumin immunoreactivities in the human retina. J. Comp. Neurol. 377, 565–576.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Da Fontoura Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L.D.F., Bonci, D.M.O., Saito, C.A. et al. Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina. Neuroinform 5, 59–77 (2007). https://doi.org/10.1385/NI:5:1:59

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:5:1:59

Index Entries

Navigation