Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 12, 2017

New results on semi-explicit and almost explicit MPC algorithms

Neue Resultate zu semi-expliziten und nahezu expliziten MPC-Algorithmen
  • Gregor Goebel

    Gregor Goebel received his Diploma in Engineering Cybernetics from the University of Stuttgart, Germany in 2011. He has since been a doctoral student at the Institute for Systems Theory and Automatic Control at the University of Stuttgart. His research interests are in the area of model predictive control with a focus on the development of efficient algorithms via the application of machine learning techniques.

    Institut für Systemtheorie und Regelungstechnik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

    EMAIL logo
    and Frank Allgöwer

    Frank Allgöwer studied Engineering Cybernetics and Applied Mathematics in Stuttgart and at University of California, Los Angeles (UCLA), respectively, and received the Ph.D. degree in chemical engineering from the University of Stuttgart, Stuttgart, Germany. He is the Director of the Institute for Systems Theory and Automatic Control, the University of Stuttgart. Since 2012, he has been serving as the Vice President of the German Research Foundation DFG, Bonn, Germany. His research interests include cooperative control, predictive control, and nonlinear control with application to a wide range of fields including systems biology. At present, Frank Allgöwer is President Elect of the International Federation of Automatic Control IFAC.

    Institut für Systemtheorie und Regelungstechnik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

Abstract

New results on a particular type of state-dependent parameterization for model predictive control (MPC) are presented. Based on such parameterizations efficient MPC algorithms can be formulated, which combine the advantages of explicit and online optimization-based MPC. The new results comprise an offline stability check for the parameterizations to decide if a closed-loop MPC scheme applying the parameterizations is asymptotically stabilizing. Second, a novel way of computing the parameterizations with improved scalability in the state space dimension is included. Furthermore, new results and simplifications of almost explicit MPC schemes based on univariate parameterizations are contributed. The results are presented in a common framework and are illustrated in numerical examples including an almost explicit controller for an eight-dimensional spring-damper system.

Zusammenfassung

Vorgestellt werden neue Ergebnisse zu einer speziellen Art von Parametrisierungen für die Anwendung in der prädiktiven Regelung (MPC). Durch Einsatz dieser zustandsabhängigen Parametrisierung im auftretenden Optimierungsproblem lassen sich besonders effiziente MPC-Algorithmen formulieren, welche die Vorteile klassischer mit denen von expliziten MPC-Algorithmen kombinieren. Die vorliegenden Ergebnisse umfassen erstens einen Stabilitätstest, mit dem asymptotische Stabilität eines vereinfachten MPC-Schemas auf Basis der Parametrisierungen verifiziert werden kann. Zweitens wird eine neue Methode zur Bestimmung der Parametrisierungen mit verbesserter Skalierbarkeit präsentiert. Einen dritten Beitrag bilden neue Ergebnisse, Vereinfachungen und Auswertungen zu stark vereinfachten nahezu expliziten MPC-Algorithmen auf Basis univariater Parametrisierungen. Numerische Beispiele werden präsentiert und umfassen den Entwurf eines äußerst effizienten nahezu expliziten MPC-Reglers für ein achtdimensionales Feder-Dämpfer-System.

About the authors

Gregor Goebel

Gregor Goebel received his Diploma in Engineering Cybernetics from the University of Stuttgart, Germany in 2011. He has since been a doctoral student at the Institute for Systems Theory and Automatic Control at the University of Stuttgart. His research interests are in the area of model predictive control with a focus on the development of efficient algorithms via the application of machine learning techniques.

Institut für Systemtheorie und Regelungstechnik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

Frank Allgöwer

Frank Allgöwer studied Engineering Cybernetics and Applied Mathematics in Stuttgart and at University of California, Los Angeles (UCLA), respectively, and received the Ph.D. degree in chemical engineering from the University of Stuttgart, Stuttgart, Germany. He is the Director of the Institute for Systems Theory and Automatic Control, the University of Stuttgart. Since 2012, he has been serving as the Vice President of the German Research Foundation DFG, Bonn, Germany. His research interests include cooperative control, predictive control, and nonlinear control with application to a wide range of fields including systems biology. At present, Frank Allgöwer is President Elect of the International Federation of Automatic Control IFAC.

Institut für Systemtheorie und Regelungstechnik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

Received: 2017-2-2
Accepted: 2017-3-1
Published Online: 2017-4-12
Published in Print: 2017-4-29

©2017 Walter de Gruyter Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2017-0006/html
Scroll to top button