Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 3, 2018

Semi-automatic generation of a virtual representation of a production cell

Combining 3D CAD and VDI-2860 behavior models by means of AutomationML

Teilautomatische Erzeugung eines virtuellen Abbilds einer Fertigungszelle
  • Suthida Thongnuch

    Suthida Thongnuch received the B.Eng. in Industrial Engineering from Sirindhorn International Institute of Technology, Thammasat University, Thailand, in 2001. She worked nine years at Festo Thailand as a PLC programmer and a system integrator. In 2012, she continued her higher education and received the M.Sc.in Mechatronics from the University of Siegen, Germany in 2015. Her main research at the Institute of Automation Technology, Helmut-Schmidt-University is virtual commissioning and a simulation-based approach to engineering support.

    EMAIL logo
    , Alexander Fay

    Alexander Fay (M’02-SM’07) received the Diploma and the Ph.D. in electrical engineering from the Technical University of Braunschweig, Germany, in 1995 and 1999, respectively. He worked five years at the ABB Corporate Research laboratories in Heidelberg and Ladenburg. Since 2004, he is Head of the Institute of Automation Technology at the Helmut-Schmidt-University in Hamburg, Germany. His main research interests are models and methods for the engineering of large automated systems, especially in the process and manufacturing industries, in buildings and transportation systems.

    and Rainer Drath

    Rainer Drath studied automation technology and received his PhD in 1999 at the TU Ilmenau. After a research stay in Japan, he moved to the ABB Corporate Research Center Ladenburg in 2001. After several research positions as project manager, group leader, program manager and senior principal scientist, at the Pforzheim University in 2017. He received a professorship for Mechatronic Systems Engineering at Pforzheim University in 2017. His research interests are in the fields of automation engineering, Industry 4.0, virtual engineering and data exchange along the engineering tool chain. He is a driver behind the data formats CAEX and AutomationML, author of related IEC62424 and IEC62714-1, editor of the AutomationML book and recipient of various research awards.

Abstract

Nowadays there are commercial tools and academic solutions that support and contribute to Virtual Commissioning (VC). However, the main obstacle which hinders the broader application of VC in practice is the modeling time and effort required to create a proper simulation model. The modeling is also separated from the current project development lifecycle. This paper presents a semi-automatic method to transform the 3D geometry model of a production cell into a simulation-enabled virtual representation (i. e., a high fidelity simulation model of the cell). The geometry is combined with dynamic behavior which is a behavior description modeled intuitively based on VDI 2860. The entire method is embedded into a virtual commissioning workflow and is exemplified by a production cell with conveyors. Several commercial modeling and simulation tools are used and combined in the workflow to demonstrate the applicability. The presented methodology bases on AutomationML.

Zusammenfassung

Die Virtuelle Inbetriebnahme (VIBN) von automatisierten Anlagen wird inzwischen durch Software-Werkzeuge unterstützt. Das größte Hemmnis für den Einzug in die industrielle Praxis stellt der Zeitaufwand dar, der für die Erstellung des Simulationsmodells der Anlage erbracht werden muss. Die Erstellung des Simulationsmodells ist dabei meistens eine vom übrigen Engineering-Ablauf losgelöste Aktivität, die einer Wirtschaftlichkeitsprüfung oft nicht standhält. In diesem Beitrag wird eine Methode vorgestellt, mit der aus dem im CAE-Werkzeug üblicherweise vorliegenden 3D-Geometrie-Modell einer Fertigungszelle teilautomatisch ein detailliertes Simulationsmodell davon erstellt werden kann. Die Geometrie wird dafür mit einer intuitiven Verhaltensbeschreibung entsprechend VDI-Richtlinie 2860 kombiniert und so dynamisiert. Die Methode ist in den VIBN-Engineering-Ablauf integriert, nutzt weit verbreitete Engineering-Werkzeuge und AutomationML als Beschreibungsmittel. Sie wird hier am Beispiel einer Fertigungszelle mit Roboter und Förderbändern demonstriert.

About the authors

Suthida Thongnuch

Suthida Thongnuch received the B.Eng. in Industrial Engineering from Sirindhorn International Institute of Technology, Thammasat University, Thailand, in 2001. She worked nine years at Festo Thailand as a PLC programmer and a system integrator. In 2012, she continued her higher education and received the M.Sc.in Mechatronics from the University of Siegen, Germany in 2015. Her main research at the Institute of Automation Technology, Helmut-Schmidt-University is virtual commissioning and a simulation-based approach to engineering support.

Alexander Fay

Alexander Fay (M’02-SM’07) received the Diploma and the Ph.D. in electrical engineering from the Technical University of Braunschweig, Germany, in 1995 and 1999, respectively. He worked five years at the ABB Corporate Research laboratories in Heidelberg and Ladenburg. Since 2004, he is Head of the Institute of Automation Technology at the Helmut-Schmidt-University in Hamburg, Germany. His main research interests are models and methods for the engineering of large automated systems, especially in the process and manufacturing industries, in buildings and transportation systems.

Rainer Drath

Rainer Drath studied automation technology and received his PhD in 1999 at the TU Ilmenau. After a research stay in Japan, he moved to the ABB Corporate Research Center Ladenburg in 2001. After several research positions as project manager, group leader, program manager and senior principal scientist, at the Pforzheim University in 2017. He received a professorship for Mechatronic Systems Engineering at Pforzheim University in 2017. His research interests are in the fields of automation engineering, Industry 4.0, virtual engineering and data exchange along the engineering tool chain. He is a driver behind the data formats CAEX and AutomationML, author of related IEC62424 and IEC62714-1, editor of the AutomationML book and recipient of various research awards.

References

1. Reinhart G, Wünsch G. Economic application of virtual commissioning to mechatronic production systems. Prod. Eng. Res. Devel. 2007; 1(4): 371–379. Available from: doi: 10.1007/s11740-007-0066-0.Search in Google Scholar

2. Drath R, Weber P, Mauser N. An Evolutionary Approach for the Industrial Introduction of Virtual Commissioning. In: Proceedings of the 2008 IEEE Conference on Emerging Technologies and Factory Automation (ETFA); 2008. Available from: doi: 10.1109/ETFA.2008.4638359.Search in Google Scholar

3. Drath R, Malakuti S, Grüner S, Grothoff J, Wagner C, Epple U et al.. Die Rolle der Industrie 4.0 “Verwaltungsschale” und des “digitalen Zwillings” im Lebenszyklus einer Anlage: Navigationshilfe, Begriffsbestimmung und Abgrenzung. In: Proceedings of the Automation 2017: Technology networks Processes. Düsseldorf: VDI Verlag GmbH; 2017.10.51202/9783181022931-93Search in Google Scholar

4. Wagner C, Grothoff J, Epple U, Drath R, Malakuti S, Grüner S, Hoffmeister M, Zimmermann P. The role of the Industry 4.0: Asset Administration Shell and the Digital Twin during the life cycle of a plant. In: Proceedings of the 2017 IEEE 22nd International Conference on Emerging Technologies and Factory Automation (ETFA); 2017.10.1109/ETFA.2017.8247583Search in Google Scholar

5. Neumeyer S, Exner K, Kind S, Hayka H, Stark R. Virtual Prototyping and Validation of CPPS within a New Software Framework. Computation. 2017; 5(1): 1–14. Available from: doi: 10.3390/computation5010010.Search in Google Scholar

6. Kuhlenkötter B, Schyja A, Hypki A, Miegel V. Robot Workcell Simulation with AutomationML Support: An Element of the CAx-Tool Chain in Industrial Automation. In: Proceedings of the 2010 6th German Conference on Robotics (ROBOTIK) and 2010 41st International Symposium on Robotics (ISR). Berlin: VDI Verlag; 2010. 1076–1082.Search in Google Scholar

7. Tolio T, Sacco M, Terkaj W, Urgo M. Virtual Factory: An Integrated Framework for Manufacturing Systems Design and Analysis. Procedia CIRP. 2013; 7: 25–30. Available from: doi: 10.1016/j.procir.2013.05.005.Search in Google Scholar

8. Hummel B. Integrated Behavior Modeling of Space-Intensive Mechatronic Systems. PhD Thesis. Technical University of Munich, Munich; 2010.Search in Google Scholar

9. Puntel-Schmidt P, Fay A. Levels of Detail and Appropriate Model Types for Virtual Commissioning in Manufacturing Engineering. IFAC-PapersOnLine. 2015; 48(1): 922–927. Available from: doi: 10.1016/j.ifacol.2015.05.027.Search in Google Scholar

10. VDI-Standard. VDI 4499 – 2. Digital Factory – Part 2: Digital Factory Operations, 2011.Search in Google Scholar

11. ABB. Operating manual: RobotStudio 6.05: ABB; 2017.Search in Google Scholar

12. VDI-Standard. VDI 2860. Handhabungsfunktionen, Handhabungseinrichtungen; Begriffe, Definitionen, Symbole (Handling functions, handling facilities: terms, definitions, symbols), 1990.Search in Google Scholar

13. Neugebauer R, Schob U. Reducing the Model Generation Effort for the Virtual Commissioning of Control Programs. Prod. Eng. Res. Devel. 2011; 5(5): 539–547. Available from: doi: 10.1007/s11740-011-0317-y.Search in Google Scholar

14. VDI-Standard. VDI 3693 – 1. Virtual Commissioning – Part 1: Model Types and Glossary, 2016.Search in Google Scholar

15. Strahilov A. Simulation des physikalischen Verhaltens bei der digitalen Absicherung von automatisierten Montageanlagen. PhD Thesis. Berlin: VDE VERLAG GmbH; 2015.Search in Google Scholar

16. Dahl M, Bengtsson K, Bergagård P, Fabian M, Falkman P. Integrated Virtual Preparation and Commissioning: Supporting formal methods during automation systems development. IFAC-PapersOnLine. 2016; 49(12): 1939–1944. Available from: doi: 10.1016/j.ifacol.2016.07.914.Search in Google Scholar

17. Neher P, Lechler A. Using game physics engines for hardware-in-the-loop material flow simulations: Benefits, requirements and experiences. In: Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2015. Available from: doi: 10.1109/AIM.2015.7222670.Search in Google Scholar

18. Lacour F-F. Modellbildung für die physikbasierte Virtuelle Inbetriebnahme materialflussintensiver Produktionsanlagen. PhD Thesis. Munich: Herbert Utz Verlag; 2012.Search in Google Scholar

19. Botaschanjan J, Hummel B, Hensel T, Lindworsky A. Integrated Behavior Models for Factory Automation Systems. In: Proceedings of the 2009 IEEE Conference on Emerging Technologies & Factory Automation (ETFA); 2009. Available from: doi: 10.1109/ETFA.2009.5347021.Search in Google Scholar

20. Spitzweg M. Methode und Konzept für den Einsatz eines physikalischen Modells in der Entwicklung von Produktionsanlagen. PhD Thesis. Munich: Herbert Utz Verlag; 2009.Search in Google Scholar

21. Hoffmann P, Schumann R, Maksoud TMA, Premier GC. Virtual commissioning of manufacturing systems: A review and new approaches for simplification. In: Bargiela A, Ali SA, Crowley D, Kerckhoffs EJH. (eds.). Proceedings of the 24th European Conference on Modeling and Simulation; 2010.10.7148/2010-0175-0181Search in Google Scholar

22. Drath R, Fay A, Barth M. Interoperabilität von Engineering-Werkzeugen: Konzepte und Empfehlungen für den Datenaustausch zwischen Engineering-Werkzeugen. at – Automatisierungstechnik. 2011; 59(7): 451–460. Available from: doi: 10.1524/auto.2011.0938.Search in Google Scholar

23. Barth M, Drath R, Fay A, Zimmer F, Eckert K. Evaluation of the openness of automation tools for interoperability in engineering tool chains. In: Proceedings of the 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA); 2012.10.1109/ETFA.2012.6489542Search in Google Scholar

24. Barth M, Strube M, Fay A, Weber P, Greifeneder J. Object-oriented engineering data exchange as a base for automatic generation of simulation models. In: Proceedings of the 35th Annual Conference of IEEE Industrial Electronics (IECON); 2009. Available from: doi: 10.1109/IECON.2009.5415229.Search in Google Scholar

25. Drath R. (ed.) Datenaustausch in der Anlagenplanung mit AutomationML: Integration von CAEX, PLCopen XML und COLLADA. Heidelberg: Springer; 2010. Available from: doi: 10.1007/978-3-642-04674-2.Search in Google Scholar

26. Boschert S, Rosen R. Digital Twin – The Simulation Aspect. In: Hehenberger P, Bradley D. (eds.) Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers. Switzerland: Springer International Publishing; 2016. 59–76. Available from: doi: 10.1007/978-3-319-32156-1.Search in Google Scholar

27. Grüner S, Weber P, Epple U. A Model for Discrete Product Flows in Manufacturing Plants. In: Proceedings of the 2014 IEEE Conference on Emerging Technologies and Factory Automation (ETFA); 2014.10.1109/ETFA.2014.7005158Search in Google Scholar

28. Grüner S, Weber P, Wagner C, Epple U. Equipment Interconnection Models in Discrete Manufacturing. IFAC-PapersOnLine. 2015; 48(1), 928–929. Available from: https://doi.org/10.1016/j.ifacol.2015.05.186.10.1016/j.ifacol.2015.05.186Search in Google Scholar

29. Fritzson P. Introduction to modeling and simulation of technical and physical systems with Modelica. New Jersey: John Wiley & Sons; 2011.10.1002/9781118094259Search in Google Scholar

30. Blochwitz T, Otter M, Arnold M, Bausch C, Clauss C, Elmqvist H, Junghanns A, Mauss J, Monteiro M, Neidhold T, Neumerkel D, Olsson H, Peetz J-V, Wolf S. The Functional Mockup Interface for Tool independent Exchange of Simulation Models. In: Proceedings of the 8th International Modelica Conference; 2011. Available from: https://doi.org/10.3384/ecp11063105.10.3384/ecp11063105Search in Google Scholar

31. Hoher S, Verl A. Multi-simulator-materialflusssimulation für die virtuelle Inbetriebnahme. In: Frey G, Schumacher W, Verl A. (eds.) SPSIPCDRIVES 2012 Tagungsband; 2012.Search in Google Scholar

Received: 2017-11-03
Accepted: 2018-03-08
Published Online: 2018-05-03
Published in Print: 2018-05-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2017-0108/html
Scroll to top button