Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 29, 2018

Wearables: Ein Blick aus ärztlicher Perspektive über Möglichkeiten, Herausforderungen und Risiken im Gesundheitswesen

Wearables: A medical perspective on opportunities, challenges and risks in healthcare
  • Markus R. Mutke

    Dr. med. univ. Markus Mutke ist Assistenzarzt der Inneren Medizin und Doktorand in der wissenschaftlichen Arbeitsgruppe von Dr. Jens Eckstein am Universitätsspital Basel, CH.

    EMAIL logo
    and Jens Eckstein

    PD Dr. med. Jens Eckstein, PhD ist Chief Medical Information Officer des Universitätspitals Basel und leitender Arzt der Inneren Medizin. Hauptarbeitsgebiete: Forschung zu Detektion von Vorhofflimmern. Erprobung, Validierung und Implementierung digitaler Technologien in die klinische Routine.

Zusammenfassung

Durch die dynamische Entwicklung von mobilen Sensoren bieten sich Medizinern ständig neue, potentiell kosteneffektive Wege für Diagnostik, Monitoring und Screening. Angetrieben durch den wachsenden Erfolg auf dem Konsumentenmarkt streben immer mehr Wearables & Co in den Gesundheitsmarkt. Weltweit beschäftigen sich Forschungsgruppen seit Jahren mit den Auswirkungen dieser mobilen Technologien auf unser Gesundheitswesen. In der Menge der zahlreichen Möglichkeiten und in Anbetracht der rapiden Entwicklung sollte jedoch bedacht werden, dass für einen erfolgreichen Einsatz am Patienten einige Herausforderungen und Risiken berücksichtigt werden müssen. Der Artikel bietet einen Einstieg in das breite Themenfeld rund um die Einführung von Wearables in die klinische Routine und berichtet über eine Auswahl an realisierten und potentiellen Einsatzmöglichkeiten.

Abstract

Due to the dynamic development of mobile sensors, physicians are continuously provided with new, potentially cost-effective ways for diagnostics, monitoring and screening. Driven by the growing success on the consumer market, more and more wearables & co. are reaching for the healthcare sector and have been the subject of intensive research worldwide for years. With so many opportunities and given the rapid development, it should stay in mind that some challenges and risks must be taken into account for the successful transformation into healthcare products. The article shares considerations from a medical perspective and presents a selection of applications. It shall provide an insight into a broad topic and thus contribute to a better understanding of the whole process around the implementation of wearables into clinical routine.

About the authors

Markus R. Mutke

Dr. med. univ. Markus Mutke ist Assistenzarzt der Inneren Medizin und Doktorand in der wissenschaftlichen Arbeitsgruppe von Dr. Jens Eckstein am Universitätsspital Basel, CH.

Jens Eckstein

PD Dr. med. Jens Eckstein, PhD ist Chief Medical Information Officer des Universitätspitals Basel und leitender Arzt der Inneren Medizin. Hauptarbeitsgebiete: Forschung zu Detektion von Vorhofflimmern. Erprobung, Validierung und Implementierung digitaler Technologien in die klinische Routine.

Literatur

1. (IDC), I.D.C., Smartwatches to Have More Than Just Fifteen Minutes of Fame, According to IDC. International Data Corporation (IDC), 2018.Search in Google Scholar

2. Dias, D. and J. Paulo Silva Cunha, Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors, 2018. 18(8): p. 2414.10.3390/s18082414Search in Google Scholar

3. Lukasz Piwek, D.A.E., Sally Andrews, Adam Joinson, The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Medicine. 2016. 13(2): e1001953.10.1371/journal.pmed.1001953Search in Google Scholar

4. Khan, Y., et al., Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016. 28(22): p. 4373–4395.10.1002/adma.201504366Search in Google Scholar

5. Chester, J.G. and J.L. Rudolph, Vital Signs in Older Patients: Age-Related Changes. Journal of the American Medical Directors Association, 2011. 12(5): p. 337–343.10.1016/j.jamda.2010.04.009Search in Google Scholar

6. Evans, D., B. Hodgkinson and J. Berry, Vital signs in hospital patients: a systematic review. International Journal of Nursing Studies, 2001. 38(6): p. 643–650.10.1016/S0020-7489(00)00119-XSearch in Google Scholar

7. Chan, A.M., et al., Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013.10.1109/EMBC.2013.6610948Search in Google Scholar PubMed

8. Yang, G.-Z., Implantable Sensors and Systems: From Theory to Practice, 2018: Springer.10.1007/978-3-319-69748-2Search in Google Scholar

9. Kyle, U.G., et al., Bioelectrical impedance analysis—part I: review of principles and methods. Clinical Nutrition, 2004. 23(5): p. 1226–1243.10.1016/j.clnu.2004.06.004Search in Google Scholar PubMed

10. Peake J.M., G. Kerr, J.P. Sullivan, A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Frontiers in Physiology. 2018; 9: 743. doi:10.3389/fphys.2018.00743.Search in Google Scholar PubMed PubMed Central

11. Lo, B.P., H. Ip and G.-Z. Yang, Transforming health care: body sensor networks, wearables, and the Internet of Things, 2016.10.1109/MPUL.2015.2498474Search in Google Scholar PubMed

12. Wolf, P.A., R.D. Abbott and W.B. Kannel, Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 1991. 22(8): p. 983-8.10.1161/01.STR.22.8.983Search in Google Scholar PubMed

13. Kirchhof, P., et al., 2016 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration With EACTS. Rev Esp Cardiol (Engl Ed), 2017. 70(1): p. 50.10.1016/j.rec.2017.07.009Search in Google Scholar PubMed

14. Krivoshei, L., et al., Smart detection of atrial fibrillationdagger. Europace, 2017. 19(5): p. 753–757.Search in Google Scholar

15. Koenig, N., et al., Validation of a New Heart Rate Measurement Algorithm for Fingertip Recording of Video Signals with Smartphones. Telemed J E Health, 2016. 22(8): p. 631-6.10.1089/tmj.2015.0212Search in Google Scholar PubMed

16. Brasier, N., et al., Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). EP Europace, 2018.10.1093/europace/euy176Search in Google Scholar PubMed PubMed Central

17. O’Brien, E., et al., European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. Journal of Hypertension, 2003. 21(5): p. 821–848.10.1097/00004872-200305000-00001Search in Google Scholar PubMed

18. Raichle, C.J., et al., Performance of a Blood Pressure Smartphone App in Pregnant Women: The iPARR Trial (iPhone App Compared With Standard RR Measurement). Hypertension, 2018.10.1161/HYPERTENSIONAHA.117.10647Search in Google Scholar PubMed

19. Fortino, G. and V. Giampà. PPG-based methods for non invasive and continuous blood pressure measurement: an overview and development issues in body sensor networks. In: 2010 IEEE International Workshop on Medical Measurements and Applications, 2010.Search in Google Scholar

20. Cretikos, M.A., et al., Respiratory rate: the neglected vital sign. Medical Journal of Australia, 2008. 188(11): p. 657.10.5694/j.1326-5377.2008.tb01825.xSearch in Google Scholar PubMed

21. Düking, P., et al., Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR Mhealth Uhealth, 2018. 6(4).10.2196/mhealth.9341Search in Google Scholar PubMed PubMed Central

22. Evenson, K.R., M.M. Goto and R.D. Furberg, Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 2015. 12(1): p. 159.10.1186/s12966-015-0314-1Search in Google Scholar PubMed PubMed Central

23. Gresham, G., et al., Wearable activity monitors in oncology trials: Current use of an emerging technology. Contemp Clin Trials, 2018. 64: p. 13–21.10.1016/j.cct.2017.11.002Search in Google Scholar PubMed

24. van der Meij, E., et al., Assessing pre- and postoperative activity levels with an accelerometer: a proof of concept study. BMC Surg, 2017. 17(1): p. 56.10.1186/s12893-017-0223-0Search in Google Scholar PubMed PubMed Central

25. Schrack, J.A., et al., Assessing Daily Physical Activity in Older Adults: Unraveling the Complexity of Monitors, Measures, and Methods. J Gerontol A Biol Sci Med Sci, 2016. 71(8): p. 1039–1048.10.1093/gerona/glw026Search in Google Scholar PubMed PubMed Central

26. Young, J. and S.K. Inouye, Delirium in older people. Bmj, 2007. 334(7598): p. 842–846.10.1136/bmj.39169.706574.ADSearch in Google Scholar PubMed PubMed Central

27. Snyder, F., et al., Changes in respiration, heart rate, and systolic blood pressure in human sleep. Journal of Applied Physiology, 1964. 19(3): p. 417–422.10.1152/jappl.1964.19.3.417Search in Google Scholar PubMed

28. Shelgikar, A.V., P.F. Anderson and M.R. Stephens, Sleep Tracking, Wearable Technology, and Opportunities for Research and Clinical Care. Chest, 2016. 150(3): p. 732–743.10.1016/j.chest.2016.04.016Search in Google Scholar PubMed

29. Kassal, P., M.D. Steinberg and I.M. Steinberg, Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 2018. 266: p. 228–245.10.1016/j.snb.2018.03.074Search in Google Scholar

30. Choi, J., et al., Skin-interfaced systems for sweat collection and analytics. Science Advances, 2018. 4(2): p. eaar3921.10.1126/sciadv.aar3921Search in Google Scholar PubMed PubMed Central

31. Kim, J., A.S. Campbell and J. Wang, Wearable non-invasive epidermal glucose sensors: A review. Talanta, 2018. 177: p. 163–170.10.1016/j.talanta.2017.08.077Search in Google Scholar PubMed

32. Cappon, G., et al., Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics, 2017. 6(3): p. 65.10.3390/electronics6030065Search in Google Scholar

33. Lobodzinski, S.S., ECG Patch Monitors for Assessment of Cardiac Rhythm Abnormalities. Progress in Cardiovascular Diseases, 2013. 56(2): p. 224–229.10.1016/j.pcad.2013.08.006Search in Google Scholar PubMed

34. Vilcant V., O. Hai, Implantable Loop Recorder. [Updated 2018 Mar 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470398/.Search in Google Scholar

35. Epstein, A.E., et al., ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Journal of the American College of Cardiology, 2008. 51(21): p. e1–e62.10.1016/j.jacc.2008.02.032Search in Google Scholar

36. Badugu, R., J.R. Lakowicz and C.D. Geddes, A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring. Journal of Fluorescence, 2003. 13(5): p. 371–374.10.1023/A:1026103804104Search in Google Scholar

37. U.S. Department of Health and Human Services, Food and Drug Administration (FDA). 2015. Mobile medical applications guidance for industry and food and drug administration staff. http://www.fda.gov/MedicalDevices/DigitalHealth/MobileMedicalApplications/default.htm.Search in Google Scholar

38. Schweizerisches Heilmittelinstitut, Leitfaden zur Medizinprodukte-Regulierung / Medizinprodukte-Zyklus 2018. www.swissmedic.ch/md-leitfaden, abgerufen 12.08.2018.10.4414/saez.2018.17387Search in Google Scholar

39. Pyrek, K.M., Mobile Technology Disinfection: Contaminated Devices Pose Threat to Patients. Screening, 2018.Search in Google Scholar

40. Yiwen, G., L. He and L. Yan, An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 2015. 115(9): p. 1704–1723.10.1108/IMDS-03-2015-0087Search in Google Scholar

41. Caduff, A., et al., Wearable sensor device, 2015, Google Patents.Search in Google Scholar

42. Goverdovsky, V., et al., Hearables: Multimodal physiological in-ear sensing. Scientific reports, 2017. 7(1): p. 6948.10.1038/s41598-017-06925-2Search in Google Scholar

43. Lin, F., et al., Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Transactions on Industrial Informatics, 2016. 12(6): p. 2281–2291.10.1109/TII.2016.2585643Search in Google Scholar

44. Kim, D.Y., et al., Different Location of Triaxial Accelerometer and Different Energy Expenditures. Yonsei Med J, 2014. 55(4): p. 1145–1151.10.3349/ymj.2014.55.4.1145Search in Google Scholar

45. Qaseem, A., et al., Risk assessment and prevention of pressure ulcers: a clinical practice guideline from the American College of Physicians. Annals of internal medicine, 2015. 162(5): p. 359–369.10.7326/M14-1567Search in Google Scholar

46. Fleming, S., et al., Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. The Lancet, 2011. 377(9770): p. 1011–1018.10.1016/S0140-6736(10)62226-XSearch in Google Scholar

47. Gillum, R., Pathophysiology of hypertension in blacks and whites. A review of the basis of racial blood pressure differences. Hypertension, 1979. 1: p. 468–475.10.1161/01.HYP.1.5.468Search in Google Scholar

48. Wagner, D.R. and V.H. Heyward, Measures of body composition in blacks and whites: a comparative review. The American Journal of Clinical Nutrition, 2000. 71(6): p. 1392–1402.10.1093/ajcn/71.6.1392Search in Google Scholar PubMed

49. Chow, J.J., et al., Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait & Posture, 2017. 57: p. 199–203.10.1016/j.gaitpost.2017.06.012Search in Google Scholar PubMed

50. Lamont, R.M., et al., Accuracy of wearable physical activity trackers in people with Parkinson’s disease. Gait & Posture, 2018. 63: p. 104–108.10.1016/j.gaitpost.2018.04.034Search in Google Scholar PubMed

51. Floegel, T.A., et al., Validation of Consumer-Based Hip and Wrist Activity Monitors in Older Adults With Varied Ambulatory Abilities. The Journals of Gerontology: Series A, 2017. 72(2): p. 229–236.10.1093/gerona/glw098Search in Google Scholar PubMed PubMed Central

52. Najafabadi, M.M. et al., Deep learning applications and challenges in big data analytics. Journal of Big Data, 2015. 2(1): p. 1.10.1186/s40537-014-0007-7Search in Google Scholar

53. Millenson, M., Baldwin, J., Zipperer, L., et al., Beyond Dr. Google: the evidence on consumer-facing digital tools for diagnosis. Diagnosis.Search in Google Scholar

54. McCartney, M., How do we know whether medical apps work? BMJ: British Medical Journal, 2013. 346.10.1136/bmj.f1811Search in Google Scholar PubMed

55. Plante, T.B., et al., Trends in user ratings and reviews of a popular yet inaccurate blood pressure-measuring smartphone app. Journal of the American Medical Informatics Association, 2018. 25(8): p. 1074–1079.10.1093/jamia/ocy060Search in Google Scholar PubMed PubMed Central

56. Wolf, J.A., et al., Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA Dermatology, 2013. 149(4): p. 422–426.10.1001/jamadermatol.2013.2382Search in Google Scholar PubMed PubMed Central

57. Brouard B., P. Bardo, C. Bonnet, N. Mounier, M. Vignot, S. Vignot, Mobile applications in oncology: is it possible for patients and healthcare professionals to easily identify relevant tools? Ann Med. 2016 Nov; 48(7):509–515. Epub 2016 Jun 27.10.1080/07853890.2016.1195010Search in Google Scholar PubMed

58. Grundlagendokument – Für eine zukunftsorientierte Datenpolitik in der Schweiz. Swiss Data Alliance, https://www.swissdataalliance.ch/ Abgerufen am 12.08.2018.Search in Google Scholar

59. https://www.midata.coop/.Search in Google Scholar

60. https://www.healthbank.coop/.Search in Google Scholar

61. Azaria, A., et al., MedRec: Using Blockchain for Medical Data Access and Permission Management. In: 2016 2nd International Conference on Open and Big Data (OBD), 2016.Search in Google Scholar

Received: 2018-04-30
Accepted: 2018-10-12
Published Online: 2018-11-29
Published in Print: 2018-12-19

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2018-0060/html
Scroll to top button