Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 13, 2019

Distributed trajectory planning for multi-agent discrete event systems

Verteilte Trajektorienplanung ereignisdiskreter Multi-Agenten-Systeme
  • Marcus Appel EMAIL logo , Michael Walther and Ulrich Konigorski

Abstract

Many systems like manufacturing systems, biological processes and even stock markets can be seen as networks of coupled decision makers and thus be described as networked discrete event systems (DES) or multi-agent discrete event systems (MADES). Information interchange between agents is usually performed indirectly via competition for shared resources. The problem of trajectory planning for MADES is about finding an optimal sequence of decisions for the particular agents. The planning process can be performed in a distributed manner. To encode the trajectory planning problem, we utilize Petri net models and present a formal way to derive integer linear programs (ILPs) that exhibit a bordered block-diagonal structure. We apply Dantzig’s decomposition method to decompose the LP-relaxed problem into multiple subproblems that can be solved locally by their corresponding agents. In general, the obtained LP solutions are non-integer. Therefore, we ensure feasibility to the original ILP using a superior Branch-and-Bound algorithm. Hence, we end up with a so called Branch-and-Price algorithm, tailored to solve trajectory planning problems for general MADES via distributed optimization.

Zusammenfassung

Vielfältige Systeme, darunter Produktionssysteme, biologische Prozesse und Finanzmärkte, können als Netzwerke interagierender Entscheider und damit als ereignisdiskrete Multi-Agenten-Systeme (MADES) beschrieben werden. Der Informationsaustausch zwischen einzelnen Agenten erfolgt indirekt im Wettstreit um gemeinsame Ressourcen. Das Trajektorienplanungsproblem für MADES fragt nach optimalen Entscheidungssequenzen für die einzelnen Agenten. Der Planungsprozess kann verteilt erfolgen. Zur Kodierung des Trajektorienplanungsproblems werden Petri-Netze verwendet und anschließend ganzzahlige lineare Programme (ILPs) mit berandeter Blockdiagonalstruktur hergeleitet. Um das LP-relaxierte Problem in Subprobleme zu zerlegen, die lokal von ihren korrespondierenden Agenten gelöst werden können, wird die Dantzig-Wolfe-Dekomposition angewendet. Im Allgemeinen ist die so gefundene LP-Lösung nicht ganzzahlig. Ein übergeordneter Branch-and-Bound-Algorithmus sichert deshalb die Zulässigkeit der Lösung. Es resultiert ein Branch-and-Price-Algorithmus, zugeschnitten, um Trajektorienplanungsprobleme für allgemeine MADES verteilt zu lösen.

References

1. R. I. Brafman and C. Domshlak. “From One to Many: Planning for Loosely Coupled Multi-Agent Systems.” In: ICAPS. Ed. by J. Rintanen et al. AAAI, 2008, pp. 28–35.Search in Google Scholar

2. J. R. Celaya, A. A. Desrochers and R. J. Graves. “Modeling and analysis of multi-agent systems using petri nets.” In: 2007 IEEE International Conference on Systems, Man and Cybernetics. Oct. 2007, pp. 1439–1444.10.1109/ICSMC.2007.4413960Search in Google Scholar

3. G. Dantzig and M. Thapa. Linear Programming 2: Theory and Extensions. Springer Series in Operations Research and Financial Engineering. Springer New York, 2006.Search in Google Scholar

4. E. Fabre and L. Jezequel. “Distributed optimal planning: an approach by weighted automata calculus.” In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. Dec. 2009, pp. 211–216.10.1109/CDC.2009.5400084Search in Google Scholar

5. R. E. Fikes and N. J. Nilsson. “STRIPS: A new Approach to the Application of Theorem Proving to Problem Solving.” In: Artificial Intelligence 2 (1971), p. 189.10.1016/0004-3702(71)90010-5Search in Google Scholar

6. G. Gamrath and M. E. Lübbecke. “Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs.” In: Experimental Algorithms: 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20–22, 2010. Proceedings. Ed. by P. Festa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 239–252.10.1007/978-3-642-13193-6_21Search in Google Scholar

7. A. J. Goldman. “Resolution and Separation Theorems for Polyhedral Convex Sets.” In: Linear Inequalities and Related Systems. Ed. by H. W. Kuhn and A. W. Tucker. Princeton University Press, 1957, pp. 41–52.10.1515/9781400881987-004Search in Google Scholar

8. L. Jezequel, E. Fabre and V. Khomenko. “Factored Planning: From Automata to Petri Nets.” In: ACM Trans. Embed. Comput. Syst. 14.2 (Feb. 2015), pp. 26:1–26:25.10.1145/2656215Search in Google Scholar

9. R. Kannan and P. I. Barton. “Convergence-order analysis of branch-and-bound algorithms for constrained problems.” In: Journal of Global Optimization 71.4 (Aug. 2018), pp. 753–813.10.1007/s10898-017-0532-ySearch in Google Scholar

10. J. Lunze. Ereignisdiskrete Systeme: Modellierung und Analyse dynamischer Systeme mit Automaten, Markovketten und Petrinetzen. Oldenbourg Wissenschaftsverlag, 2012.10.1524/9783486721027Search in Google Scholar

11. S. J. Maher et al. The SCIP Optimization Suite 4.0. eng. Tech. rep. 17-12, Takustr. 7, 14195 Berlin: ZIB, 2017.Search in Google Scholar

12. J. W. Mamer and R. D. McBride. “A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs: An Application to the Linear Multicommodity Flow Problem.” In: Management Science 46.5 (2000), pp. 693–709.10.1287/mnsc.46.5.693.12042Search in Google Scholar

13. F. Rossi, P. v. Beek and T. Walsh. Handbook of Constraint Programming (Foundations of Artificial Intelligence). New York, NY, USA: Elsevier Science Inc., 2006.Search in Google Scholar

14. O. Stursberg and C. Hillmann. “Decentralized Optimal Control of Distributed Interdependent Automata With Priority Structure.” In: IEEE Transactions on Automation Science and Engineering 14.2 (Apr. 2017), pp. 785–796.10.1109/TASE.2017.2669893Search in Google Scholar

15. M. Weerdt and B. Clement. “Introduction to planning in multiagent systems.” In: Multiagent and Grid Systems 5 (Dec. 2009), pp. 345–355.10.3233/MGS-2009-0133Search in Google Scholar

Received: 2018-10-19
Accepted: 2019-06-17
Published Online: 2019-09-13
Published in Print: 2019-09-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2018-0127/html
Scroll to top button