Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 3, 2021

The potentials of indoor farming for plant production

Potentiale von Indoor Farming zur Pflanzenproduktion
  • Heike Mempel

    Prof. Dr. Heike Mempel conducts research on questions focused on crop production strategies, resource consumption, use of different light spectrum to improve plant physiology, productivity and quality aspects as well as methods to measure quality parameters of fruit and vegetables along the supply chain. After studying horticultural science at the Technical University Munich (TUM), Professor Mempel worked as a research assistant at the Leibniz Institute for Agricultural Engineering and Bioeconomy and TUM. Before being appointed professor at the University of Applied Sciences, she worked for several years in a leading position in the quality management of several leading food retailer in Germany. Furthermore, she is head of the Applied Science Centre for Smart Indoor Farming at the University of Applied Science Weihenstephan-Triesdorf.

    EMAIL logo
    , Ivonne Jüttner

    Ivonne Jüttner, B.Sc. is currently studying at the Technical University Munich (TUM) in horticultural management. She is currently working in an indoor farming project financed by STMELF as a research assistant in Prof. Mempel‘s team. Her aim is to reduce the total electrical energy by an optimization of crop cultivation strategies as well as the adjustment of the technological equipment.

    and Sabine Wittmann

    Sabine Wittmann, B.Sc. is currently studying at the Technical University Munich (TUM) in horticultural management. She is currently working as a research assistant in the project CUBESCircle in Prof. Mempel‘s team, focusing on plant growth in closed production systems, use of light strategies and issues on plant physiology as well as the evaluation and optimization of resource use.

Abstract

Plant production in indoor farming systems offers significant advantages compared to open field or greenhouse production systems. Especially in terms of quality and the ability for automation the system is superior to the conventional production systems. Concerning resource consumption indoor farming has considerable advantages in regard to water consumption and the use of pesticides. The main disadvantage is the high consumption of electrical energy. Taking advantage of the specific benefits or eliminating the disadvantages, for example by using renewable energies, different potentials and fields of application for indoor farming arise. The paper outlines the potentials and future fields of application of indoor farming considering the specific differences to conventional production systems related to resource consumption, quality and automation.

Zusammenfassung

Die Pflanzenproduktion in Indoor Farming Systemen bietet in Bezug auf Qualität und der Möglichkeit, Prozesse zu automatisieren, erhebliche Vorteile gegenüber den konventionellen Produktionssystemen im Freiland oder im Gewächshaus. Und auch der Ressourcenverbrauch weist in den Bereichen Wasser, Nährstoffe und Pflanzenschutz erhebliche Vorteile gegenüber den klassischen Produktionssystemen auf. Der wesentliche Nachteil liegt im hohen Verbrauch der elektrischen Energie. Vor dem Hintergrund dieser Unterschiede ergeben sich spezifische Anwendungsfelder für das Thema Indoor Farming, bei denen die Vorteile gezielt genutzt werden können und Nachteile beispielsweise durch die Nutzung regenerativer Energiequellen reduziert werden. Der Beitrag zeigt Potentiale und zukünftige Anwendungsfelder von Indoor Farming auf und gliedert diese nach den spezifischen Unterschieden der Produktionssysteme in die Bereiche Ressourceneinsatz, Qualität und Automatisierung.

About the authors

Heike Mempel

Prof. Dr. Heike Mempel conducts research on questions focused on crop production strategies, resource consumption, use of different light spectrum to improve plant physiology, productivity and quality aspects as well as methods to measure quality parameters of fruit and vegetables along the supply chain. After studying horticultural science at the Technical University Munich (TUM), Professor Mempel worked as a research assistant at the Leibniz Institute for Agricultural Engineering and Bioeconomy and TUM. Before being appointed professor at the University of Applied Sciences, she worked for several years in a leading position in the quality management of several leading food retailer in Germany. Furthermore, she is head of the Applied Science Centre for Smart Indoor Farming at the University of Applied Science Weihenstephan-Triesdorf.

Ivonne Jüttner

Ivonne Jüttner, B.Sc. is currently studying at the Technical University Munich (TUM) in horticultural management. She is currently working in an indoor farming project financed by STMELF as a research assistant in Prof. Mempel‘s team. Her aim is to reduce the total electrical energy by an optimization of crop cultivation strategies as well as the adjustment of the technological equipment.

Sabine Wittmann

Sabine Wittmann, B.Sc. is currently studying at the Technical University Munich (TUM) in horticultural management. She is currently working as a research assistant in the project CUBESCircle in Prof. Mempel‘s team, focusing on plant growth in closed production systems, use of light strategies and issues on plant physiology as well as the evaluation and optimization of resource use.

References

1. FAO: The future of food and agriculture – Trends and challenges. Rome 2017.Search in Google Scholar

2. United Nations, Department of Economic and Social Affairs, Population Division: World urbanization prospects. United Nations, New York 2019.Search in Google Scholar

3. N. Alexandratos, J. Bruinsma: World agriculture towards 2030/2050: the 2012 revision, 2012.Search in Google Scholar

4. N. V. Fedoroff: Food in a future of 10 billion, Agric & Food Secur, vol. 4, no. 1, p. 234, 2015.10.1186/s40066-015-0031-7Search in Google Scholar

5. N. Clinton, M. Stuhlmacher, A. Miles, N. Uludere Aragon, M. Wagner, M. Georgescu, C. Herwig, P. Gong: A Global Geospatial Ecosystem Services Estimate of Urban Agriculture, Earth’s Future, vol. 6, no. 1, pp. 40–60, 2018.10.1002/2017EF000536Search in Google Scholar

6. K. Al-Kodmany: The Vertical Farm: A Review of Developments and Implications for the Vertical City, Buildings, vol. 8, no. 2, p. 24, 2018.10.3390/buildings8020024Search in Google Scholar

7. A. Di Paola, M. C. Rulli, M. Santini: Human food vs. animal feed debate. A thorough analysis of environmental footprints, Land Use Policy, vol. 67, pp. 652–659, 2017.10.1016/j.landusepol.2017.06.017Search in Google Scholar

8. Y. Kong, A. Nemali, C. Mitchell, K. Nemali: Spectral Quality of Light Can Affect Energy Consumption and Energy-use Efficiency of Electrical Lighting in Indoor Lettuce Farming, HortScience, vol. 54, no. 5, pp. 865–872, 2019.10.21273/HORTSCI13834-18Search in Google Scholar

9. G. L. Barbosa, F. D. A. Gadelha, N. Kublik, A. Proctor, L. Reichelm, E. Weissinger, G. M. Wohlleb, R. U. Halden: Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods, Int J Environ Res Public Health, vol. 12, no. 6, pp. 6879–6891, 2015.10.3390/ijerph120606879Search in Google Scholar PubMed PubMed Central

10. E. Banchio, P. C. Bogino, J. Zygadlo, W. Giordano: Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L, Biochemical Systematics and Ecology, vol. 36, no. 10, pp. 766–771, 2008.10.1016/j.bse.2008.08.006Search in Google Scholar

11. N. Lu, M. Takagaki, W. Yamori, N. Kagawa: Flavonoid Productivity Optimized for Green and Red Forms of Perilla frutescens via Environmental Control Technologies in Plant Factory, Journal of Food Quality, pp. 1–9, 2018.10.1155/2018/4270279Search in Google Scholar

12. M. Tonelli, E. Pellegrini, F. D’Angiolillo, M. Petersen, C. Nali, L. Pistelli, G. Lorenzini: Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L, Plant Cell Tiss Organ Cult, vol. 120, no. 2, pp. 617–629, 2015.10.1007/s11240-014-0628-8Search in Google Scholar

13. M. de Vincenzi, A. Stammati, A. de Vincenzi, M. Silano: Constituents of aromatic plants: carvacrol, Fitoterapia, vol. 75, no. 7-8, pp. 801–804, 2004.10.1016/j.fitote.2004.05.002Search in Google Scholar PubMed

14. E. Vági, B. Simándi, Á. Suhajda, É. Héthelyi: Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide, Food Research International, vol. 38, no. 1, pp. 51–57, 2005.10.1016/j.foodres.2004.07.006Search in Google Scholar

15. I. H. Sellami, E. Maamouri, T. Chahed, W. A. Wannes, M. E. Kchouk, B. Marzouk: Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.), Industrial Crops and Products, vol. 30, no. 3, pp. 395–402, 2009.10.1016/j.indcrop.2009.07.010Search in Google Scholar

16. B. Galambosi, Z. Galambosi, R. Pessala, M. Repcak, I. Hupila, A. Aflatuni: Yield and quality of selected herb cultivars in Finland, Acta Hortic., vol. 576, pp. 139–149, 2002.10.17660/ActaHortic.2002.576.21Search in Google Scholar

17. G. Zawiślak: Dependence on harvest date and yielding of Marjoram (Origanum majorana L.) cv. ‘Miraż’ cultivated from a seedling, Acta Sci. Pol.Hortorum Cultus, vol. 7, no. 2, p. 7, 2008.Search in Google Scholar

18. https://publikationen.sachsen.de/bdb/artikel/13856, 05.04.2020.Search in Google Scholar

19. R. Nurzyńska-Wierdak, K. Dzida: Influence of plant density and term of harvest on yield and chemical composition of sweet marjoram (Origanum majorana L.), Acta Sci. Pol. Hortorum Cultus, vol. 8, no. 1, p. 8, 2009.Search in Google Scholar

20. B. Murillo-Amador, A. Nieto-Garibay, R. López-Aguilar, E. Troyo-Diéguez, E. O. Rueda-Puente, A. Flores-Hernández, F. H. Ruiz-Espinoza: Physiological, morphometric characteristics and yield of Origanum vulgare L. and Thymus vulgaris L. exposed to open-field and shade-enclosure, Industrial Crops and Products, vol. 49, pp. 659–667, 2013.10.1016/j.indcrop.2013.06.017Search in Google Scholar

21. M. G. Trivino, C. B. Johnson: Season has a Major Effect on the Essential oil Yield response to Nutrient Supply in Origanum Majorana, The Journal of Horticultural Science and Biotechnology, vol. 75, no. 5, pp. 520–527, 2000.10.1080/14620316.2000.11511278Search in Google Scholar

22. E. J. Pekkeriet, E. J. van Henten: Current developments of high-tech robotic and mechatronic systems in horticulture and challenges for the future, Acta Hortic., vol. 893, p. 85–94, 2011.10.17660/ActaHortic.2011.893.4Search in Google Scholar

23. C. Lehnert, C. McCool, I. Sa, T. Perez: A Sweet Pepper Harvesting Robot for Protected Cropping Environments, http://arxiv.org/pdf/1810.11920v1, 29.10.2018.Search in Google Scholar

24. C. W. Bac, E. J. van Henten, J. Hemming, Y. Edan: Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead, J. Field Robotics, vol. 31, no. 6, pp. 888–911, 2014.10.1002/rob.21525Search in Google Scholar

25. B. Lee, D. Kam, B. Min, J. Hwa, S. Oh: A Vision Servo System for Automated Harvest of Sweet Pepper in Korean Greenhouse Environment, Applied Sciences, vol. 9, no. 12, p. 2395, 2019.10.3390/app9122395Search in Google Scholar

26. P. Li, S.-h.Lee, H.-Y. Hsu: Review on fruit harvesting method for potential use of automatic fruit harvesting systems, Procedia Engineering, vol. 23, pp. 351–366, 2011.10.1016/j.proeng.2011.11.2514Search in Google Scholar

27. J. Hemming: Automation and robotics in the protected environment, current developments and challenges for the future. Wageningen University & Research, 2018.Search in Google Scholar

28. H. S. Ahn, F. Dayoub, M. Popovic, B. MacDonald, R. Siegwart, I. Sa: An Overview of Perception Methods for Horticultural Robots: From Pollination to Harvest, http://arxiv.org/pdf/1807.03124v1, 26.06.2018.Search in Google Scholar

29. M. G. Antonelli, P. B. Zobel, F. Durante, T. Raparelli: Development of an Automated System for the Selective Harvesting of Radicchio, International Journal of Automation Technology, vol. 11, no. 3, pp. 415–424, 2017.10.20965/ijat.2017.p0415Search in Google Scholar

30. Y. Onishi, T. Yoshida, H. Kurita, T. Fukao, H. Arihara, A. Iwai: An automated fruit harvesting robot by using deep learning, Robomech J, vol. 6, no. 1, 2019.10.1186/s40648-019-0141-2Search in Google Scholar

31. H. A.M. Williams, M. H. Jones, M. Nejati, M. J. Seabright, J. Bell, N. D. Penhall, J. J. Barnett, M. D. Duke, A. J. Scarfe, H. S. Ahn, J. Lim, B. A. MacDonald: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms, Biosystems Engineering, vol. 181, pp. 140–156, 2019.10.1016/j.biosystemseng.2019.03.007Search in Google Scholar

32. http://www.growponics.co.uk/, 05.04.2020.Search in Google Scholar

33. https://www.visconhydroponics.eu/de/, 05.04.2020.Search in Google Scholar

34. C. W. Bac, J. Hemming, B. A. J. van Tuijl, R. Barth, E. Wais, E. J. van Henten: Performance Evaluation of a Harvesting Robot for Sweet Pepper, J. Field Robotics, vol. 34, no. 6, pp. 1123–1139, 2017.10.1002/rob.21709Search in Google Scholar

35. https://www.cubescircle.de/, 05.04.2020.Search in Google Scholar

Received: 2020-04-05
Accepted: 2020-07-14
Published Online: 2021-04-03
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2020-0044/html
Scroll to top button