Abstract
Respiratory support is a key element of modern medical care, ranging from oxygen therapy to full ventilatory support. A central component of mechanical ventilation is the control of the resulting pneumatic quantities such as pressure and flow. In this article the use of robust model predictive control for pressure-controlled mechanical ventilation is proposed, with the goal of increasing the safety of the patient by considering physiological safety constraints. The uncertainty in the estimation of physiological model parameters as well as model uncertainties are considered as disturbances to the system, which are taken into account through the proposed robust model predictive control framework. The practical applicability of this control approach is illustrated in an implementation on a research demonstrator of the ventilation unit from an anaesthesia workstation.
Zusammenfassung
Atemtherapie ist ein wesentliches Element moderner Medizin. Die Bandbreite reicht dabei von der Sauerstoffzugabe bis zur vollständigen maschinellen Beatmung. Eine zentrale Komponente der Beatmung ist die Regelung der resultierenden pneumatischen Größen wie Druck und Volumenstrom. Mit dem Ziel, die Patientensicherheit weiter zu verbessern, wird in diesem Artikel die Verwendung von robusten, modellprädiktiven Regelansätzen zur Druckregelung in der druckkontrollierten Beatmung diskutiert. In dieser Veröffentlichung wird ein Ansatz verfolgt, bei dem die Modellunsicherheiten des physiologischen Modells in einem robusten modellprädiktiven Regelungskonzept explizit berücksichtigt werden. Die praktische Umsetzung dieses Ansatzes wird anhand eines Forschungsdemonstrators der Ventilationseinheit eines Anästhesiegerätes präsentiert.
Funding statement: This work was partially funded by the Drägerwerk AG & Co. KGaA, Lübeck, Germany.
About the authors
Georg Männel, received the Master degree in medical engineering science from the University of Lübeck, Lübeck, Germany, in 2016. He is currently pursuing the Ph. D. degree with the Institute for electrical engineering in medicine, University of Lübeck, Lübeck, Germany. He conducted his Master thesis with the Drägerwerk AG & Co. KGaA from 2015 to 2016. His current research interest include modular hierarchical control, cyber physiological systems and safe learning-based control in medical applications.
Marlin Siebert holds a M. Sc. degree in Medical Engineering Science from Universität zu Lübeck, since 2019. His master thesis was on the optimization and robustification of the model predictive control to the ventilation system of an anaesthesia workstation in 2019. He was an intern at Drägerwerk AG & Co. KGaA in the department for research and development and worked on medical deep learning in 2018. Since 2020 he is employed as research associate at the Institute for Electrical Engineering in Medicine at the Universität zu Lübeck.
Christian Brendle, received the Ph. D. degree in electrical engineering from the RWTH Aachen University Germany, in 2018. He completed his dissertation on Cooperative Automation of the Therapy of the Acute Lung Failure with extracorporeal support and artificial ventilation at the Chair of Medical Information Technology of the RWTH Aachen University. Currently he develops novel medical systems at Drägerwerk AG & Co. KGaA, Lübeck, Germany. His current research interest include closed-loop controlled systems, modular medical devices and model based systems engineering in medical applications.
Prof. Dr. Philipp Rostalski is a Head of the Institute for Electrical Engineering in Medicine at the University of Lübeck. His research focuses on model- and data-driven methods in signal processing, estimation and control for safety critical systems. The primary application domains are biomedical and autonomous systems.
References
1. A. B. Lumb, Nunn’s Applied Respiratory Physiology. Edinburgh: Elsevier, 2016.Search in Google Scholar
2. G. Männel, C. Hoffmann and P. Rostalski, “A robust model predictive control approach to intelligent respiratory support,” in 2018 IEEE Conference on Control Technology and Applications (CCTA). IEEE, aug 2018.10.1109/CCTA.2018.8511363Search in Google Scholar
3. P. von Platen, A. Pomprapa, B. Lachmann and S. Leonhardt, “The dawn of physiological closed-loop ventilation – A review,” Critical Care, vol. 24, no. 1, mar 2020.10.1186/s13054-020-2810-1Search in Google Scholar PubMed PubMed Central
4. H. Li and W. M. Haddad, “Model predictive control for a multicompartment respiratory system,” IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1988–1995, sep 2013.10.1109/TCST.2012.2210956Search in Google Scholar
5. M. Scheel, A. Berndt and O. Simanski, “Model predictive control approach for a CPAP-device,” Current Directions in Biomedical Engineering, vol. 3, no. 2, jan 2017.10.1515/cdbme-2017-0065Search in Google Scholar
6. A. Pomprapa, S. Weyer, S. Leonhardt, M. Walter and B. Misgeld, “Periodic funnel-based control for peak inspiratory pressure,” in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, dec 2015.10.1109/CDC.2015.7403100Search in Google Scholar
7. M. A. Borrello, “Adaptive inverse model control of pressure based ventilation,” in Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148). IEEE, 2001.10.1109/ACC.2001.945900Search in Google Scholar
8. J. Reinders, B. Hunnekens, F. Heck, T. Oomen and N. van de Wouw, “Adaptive control for mechanical ventilation for improved pressure support,” IEEE Transactions on Control Systems Technology, pp. 1–14, 2020.10.1109/TCST.2020.2969381Search in Google Scholar
9. M. Scheel, A. Berndt and O. Simanski, “Iterative learning control: An example for mechanical ventilated patients,” IFAC-PapersOnLine, vol. 48, no. 20, pp. 523–527, 2015.10.1016/j.ifacol.2015.10.194Search in Google Scholar
10. J. Reinders, R. Verkade, B. Hunnekens, N. van de Wouw and T. Oomen, “Improving mechanical ventilation for patient care through repetitive control,” arXiv:2004.00312, 2020.10.1016/j.ifacol.2020.12.1906Search in Google Scholar
11. G. Männel, M. Siebert, D. Kleinewalter, C. Brendle and P. Rostalski, “Model predictive control of an anesthia workstation ventilation unit,” in 21st IFAC World Congress, Berlin, Germany, Jul. 2020.10.1016/j.ifacol.2020.12.085Search in Google Scholar
12. D. Limon, I. A. Alvarado, T. Alamo and E. F. Camacho, “On the design of robust tube-based MPC for tracking,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 15 333–15 338, 2008.10.3182/20080706-5-KR-1001.02593Search in Google Scholar
13. R. S. Campbell and B. R. Davis, “Pressure-controlled versus volume-controlled ventilation: Does it matter?” Respiratory Care, vol. 47, pp. 416–424; discussion 424–426, Apr. 2002.Search in Google Scholar
14. M. P. Shelly and P. Nightingale, “ABC of intensive care: Respiratory support,” Brit. Med. J., vol. 318, no. 7199, pp. 1674–1677, 1999.10.1136/bmj.318.7199.1674Search in Google Scholar
15. B. Al-Shaikh and S. Stacey, Essentials of Anaesthetic Equipment. Edinburgh/New York, Churchill Livingstone/Elsevier, 2013.Search in Google Scholar
16. J. H. T. Bates, Lung Mechanics. Cambridge University Press, 2009.10.1017/CBO9780511627156Search in Google Scholar
17. R. K. Mehra and J. Peschon, “An innovations approach to fault detection and diagnosis in dynamic systems,” Automatica, vol. 7, no. 5, pp. 637–640, sep 1971.10.1016/0005-1098(71)90028-8Search in Google Scholar
18. D. Limon, I. A. Alvarado, T. Alamo and E. F. Camacho, “MPC for tracking piecewise constant references for constrained linear systems,” Automatica, vol. 44, no. 9, pp. 2382–2387, sep 2008.10.1016/j.automatica.2008.01.023Search in Google Scholar
19. K. R. Muske and J. B. Rawlings, “Model predictive control with linear models,” AIChE Journal, vol. 39, no. 2, pp. 262–287, feb 1993.10.1002/aic.690390208Search in Google Scholar
20. F. Borrelli, A. Bemporad and M. Morari, Predictive Control for Linear and Hybrid Systems. Cambridge University Press, jun 2017.10.1017/9781139061759Search in Google Scholar
21. M. S. Darup and D. Teichrib, “Efficient computation of RPI sets for tube-based robust MPC, ” in 2019 18th European Control Conference (ECC). IEEE, jun 2019.10.23919/ECC.2019.8796265Search in Google Scholar
22. S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas and D. Q. Mayne, “Invariant approximations of the minimal robust positively invariant set,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–410, mar 2005.10.1109/TAC.2005.843854Search in Google Scholar
23. H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock and M. Diehl, “qpOASES: A parametric active-set algorithm for quadratic programming,” Mathematical Programming Computation, vol. 6, no. 4, pp. 327–363, apr 2014.10.1007/s12532-014-0071-1Search in Google Scholar
24. J. Löfberg, “YALMIP: a toolbox for modeling and optimization in MATLAB,” in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508). IEEE, 2004.Search in Google Scholar
25. M. Herceg, M. Kvasnica, C. N. Jones and M. Morari, “Multi-parametric toolbox 3.0,” in 2013 European Control Conference (ECC). IEEE, jul 2013.10.23919/ECC.2013.6669862Search in Google Scholar
26. J. B. Rawlings, D. Q. Mayne and M. M. Diehl, Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, LLC, 2018.Search in Google Scholar
27. “Medical electrical equipment – part 2-12: Particular requirements for basic safety and essential performance of critical care ventilators,” Geneva, CH, Standard, Apr. 2011.Search in Google Scholar
28. J. Kohler, E. Andina, R. Soloperto, M. A. Muller and F. Allgower, “Linear robust adaptive model predictive control: Computational complexity and conservatism,” in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, dec 2019.10.1109/CDC40024.2019.9028970Search in Google Scholar
29. J. Graßhoff, G. Männel, H. S. Abbas and P. Rostalski, “Model predictive control using efficient Gaussian processes for unknown disturbance inputs,” in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, dec 2019.10.1109/CDC40024.2019.9030032Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston