Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 5, 2022

RaptorQ codes aided secure data delivery strategy for vehicular networks

RaptorQ-Codes unterstützten eine sichere Datenbereitstellungsstrategie für Fahrzeugnetze
  • Berna Bulut Cebecioglu

    Berna Bulut Cebecioglu received the B. Sc. degree in electrical engineering from Kocaeli University, Kocaeli, Turkey, in 2007, the M. Sc. in communication networks and signal processing and the Ph.D. degree in electrical and electronic engineering from the University of Bristol, Bristol, U.K, in 2011 and 2016 respectively. She was a senior research associate in electrical and electronic engineering with the University of Bristol. Her research interests include 5G networks, cross-layer design and optimisations of wireless networks, WiFi communication systems, multimedia multicasting and broadcasting services, propagation modelling, millimetre wave and vehicular communications.

    EMAIL logo

Abstract

This paper deals with security issues in the presence of an eavesdropper for a vehicular scenario. The proposed secure data delivery scheme implements Fountain Codes, namely RaptorQ (RQ) codes, at the application layer (AL) to increase communication security against eavesdroppers’ attacks. For RQ coded transmission scheme, the receiver has to collect a sufficient number of coded packets to reconstruct the original source data. Secure delivery can be achieved if the legitimate user obtains enough RQ coded packets before the eavesdropper does. To satisfy this condition, it is proposed to use a road side unit (RSU) cooperation method when the eavesdropper has better channel conditions than the legitimate user to scatter the coded packets from multiple RSUs. The aim is to reduce the probability that the eavesdropper receives the sufficient number of coded packets and recover the source data before the legitimate user. An optimisation framework which jointly selects the RQ code rate at the AL and Modulation and Coding Scheme (MCS) at the physical (PHY) layer to ensure the secure data transmission by allowing the user to decode the file with a certain probability of decoding success while minimising the intercept probability at the eavesdropper is presented. To evaluate the proposed system, a realistic end-to-end system level simulator is developed. Simulation results show that the proposed scheme can provide secure and efficient data transmission over vehicular networks by significantly reducing the intercept probability at the eavesdropper.

Zusammenfassung

Der Beitrag befasst sich mit Sicherheitsproblemen in Anwesenheit eines Lauschers für ein Fahrzeugszenario. Das vorgeschlagene Schema zur sicheren Datenübermittlung implementiert Fountain Codes, nämlich RaptorQ-Codes, auf der Anwendungsebene, um die Kommunikationssicherheit gegen Lauscherangriffe zu erhöhen. Für das RQ-codierte Übertragungsschema muss der Empfänger eine ausreichende Anzahl von codierten Paketen sammeln, um die ursprünglichen Quelldaten zu rekonstruieren. Eine sichere Zustellung kann erreicht werden, wenn der legitime Benutzer genügend RQ-codierte Pakete erhält, bevor der Lauscher dies tut. Um diese Bedingung zu erfüllen, wird vorgeschlagen, ein straßenseitiges Einheitskooperationsverfahren zu verwenden, wenn der Lauscher bessere Kanalbedingungen als der legitime Benutzer hat, um die codierten Pakete von mehreren RSUs zu streuen. Ziel ist es, die Wahrscheinlichkeit zu verringern, dass der Lauscher die ausreichende Anzahl von codierten Paketen hat und die Quelldaten vor dem legitimen Benutzer wiederherstellen kann. Ein Optimierungs-Framework wird vorgestellt, das gemeinsam die RQ-Coderate beim AL und das Modulations- und Codierungsschema auf der physikalischen Schicht auswählt, um die sichere Datenübertragung zu gewährleisten, indem es dem Benutzer ermöglicht, die Datei mit einer bestimmten Wahrscheinlichkeit des Decodierungserfolgs zu decodieren, während die Abfangwahrscheinlichkeit bei der Lauscher minimiert wird. Um das vorgeschlagene System zu bewerten, wird ein realistischer End-to-End-Simulator auf Systemebene entwickelt. Simulationsergebnisse zeigen, dass das vorgeschlagene Schema eine sichere und effiziente Datenübertragung über Fahrzeugnetzwerke bieten kann, indem es die Abhörwahrscheinlichkeit am Lauscher deutlich reduziert.

About the author

Berna Bulut Cebecioglu

Berna Bulut Cebecioglu received the B. Sc. degree in electrical engineering from Kocaeli University, Kocaeli, Turkey, in 2007, the M. Sc. in communication networks and signal processing and the Ph.D. degree in electrical and electronic engineering from the University of Bristol, Bristol, U.K, in 2011 and 2016 respectively. She was a senior research associate in electrical and electronic engineering with the University of Bristol. Her research interests include 5G networks, cross-layer design and optimisations of wireless networks, WiFi communication systems, multimedia multicasting and broadcasting services, propagation modelling, millimetre wave and vehicular communications.

References

1. J. Barros and M. R. D. Rodrigues, “Secrecy capacity of wireless channels,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle, USA, pp. 356–360, July 2006.10.1109/ISIT.2006.261613Search in Google Scholar

2. M. Bloch, J. Barros, M. R. D. Rodrigues and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans. Inform. Theory, vol. 54, pp. 2515–2534, June 2008.10.1109/TIT.2008.921908Search in Google Scholar

3. A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.10.1002/j.1538-7305.1975.tb02040.xSearch in Google Scholar

4. A. Mukherjee, S. A. Fakoorian, J. Huang and A. L. Swindlehurst, “Principles of physical layer security in multiuser wireless networks: A survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1550–1573, Feb., 2014.10.1109/SURV.2014.012314.00178Search in Google Scholar

5. H. Niu, M. Iwai, K. Sezaki, L. Sun and Q. Du, “Exploiting fountain codes for secure wireless delivery,” IEEE Commun. Lett., vol. 18, no. 5, pp. 777–780, May 2014.10.1109/LCOMM.2014.030914.140030Search in Google Scholar

6. L. Sun, P. Ren, Q. Du and Y. Wang, “Fountain-coding aided strategy for secure cooperative transmission in industrial wireless sensor networks,” IEEE Trans. Ind. Informat., vol. 12, no. 1, pp. 291–300, Feb. 2016.10.1109/TII.2015.2509442Search in Google Scholar

7. D. J. C. MacKay, “Fountain codes,” IEE Proc. Commun., vol. 152, no. 6, pp. 1062–1068, Dec. 2005.10.1049/ic:20040504Search in Google Scholar

8. A. S. Khan, I. Chatzigeorgiou, G. Zheng, B. Basutli, J. M. Chuma and S Lambotharan, “Random linear network coding based physical layer security for relay-aided device-to-device communication,” IET Communications, vol. 14, no. 7, pp. 1155–1161, Apr. 2020.10.1049/iet-com.2019.0767Search in Google Scholar

9. M. A. Shokrollahi and M. Luby, “Raptor codes,” Foundations and Trends in Communications and Information Theory, vol. 6, no. 3-4, pp. 213–322, 2011.10.1561/0100000060Search in Google Scholar

10. M. Luby, T. Gasiba, T. Stockhammer and M. Watson, “Reliable multimedia download delivery in cellular broadcast networks,” IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 235–246, March 2007.10.1109/TBC.2007.891703Search in Google Scholar

11. X. Wang, W. Chen and Z. Cao, “SPARC: Superposition-aided rateless coding in wireless relay systems,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4427–4438, Nov. 2011.10.1109/TVT.2011.2171773Search in Google Scholar

12. J. Liu, W. Zhang, Q. Wang, S. Li, H. Chen, X. Cui and Y. Sun, “A cooperative downloading method for VANET using distributed fountain code,” Sensors, vol. 16, no. 10, pp. 1685–1696, 2016.10.3390/s16101685Search in Google Scholar PubMed PubMed Central

13. L. Jie, G. Erling, S. Zhiqiang, L. Wei and X. Hongwei, “AeroMTP: a fountain code-based multipath transport protocol for airborne networks”, Chinese Journal of Aeronautics, vol. 28, no. 4, pp. 1147–1162, 2015.10.1016/j.cja.2015.05.010Search in Google Scholar

14. M. Luby, A. Shokrollahi, M. Watson and T. Stockhammer, RaptorQ Forward Error Correction Scheme for Object Delivery. RFC 6330. (Internet Engineering Task Force, 2011), http://www.ietf.org/rfc/rfc6330.txt.10.17487/rfc6330Search in Google Scholar

15. S. Sun, G. R. MacCartney Jr. and T. S. Rappaport, “A novel millimeter-wave channel simulator and applications for 5G wireless Communications,” In: IEEE International Conference on Communications (ICC), May 2017.10.1109/ICC.2017.7996792Search in Google Scholar

16. S. Ju, O. Kanhere, Y. Xing and T. S. Rappaport, “A millimeter-wave channel simulator NYUSIM with spatial consistency and human blockage,” In: IEEE Global Communications Conference (GLOBECOM), Hawaii, USA, Dec. 2019, pp. 1–6.10.1109/GLOBECOM38437.2019.9013273Search in Google Scholar

17. B. Bulut et al.  “Multicast Wi-Fi Raptor-enabled data carousel design: Simulation and practical implementation,” EURASIP J. Adv. Signal Process., vol. 2016, no. 1, p. 15, 2016.10.1186/s13634-016-0316-4Search in Google Scholar

18. D. Munaretto, D. Jurca and J. Widmer, “Broadcast video streaming in cellular networks: An adaptation framework for channel, video and AL-FEC rates allocation,” In: The 5th Annual ICST Wireless Internet Conference (WICON), IEEE, March, 2010, pp. 1–9.10.4108/ICST.WICON2010.8457Search in Google Scholar

19. 3GPP TR 22.186 v16.0.0. Technical specification group services and system aspects. Enhancement of 3GPP support for V2X scenarios, Rel. 15. Sept. 2018.Search in Google Scholar

20. 3GPP TR 23.786 v0.8.0. Technical specification group services and system aspects; Study on architecture enhancements for EPS and 5G system to support advanced V2X services, Rel. 16, Aug. 2018.Search in Google Scholar

21. 3GPP TS 38.211 V15.0.0, “Physical Channels and Modulation,” Dec. 2017.Search in Google Scholar

22. 3GPP Tdoc S4-110449, “Rationale for MBMS AL-FEC Enhancements,” Sept. 2011.Search in Google Scholar

Received: 2020-10-05
Accepted: 2021-09-23
Published Online: 2022-02-05
Published in Print: 2022-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2020-0146/html
Scroll to top button