Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 8, 2023

Towards numerical control of machine tools from the edge cloud

Numerische Steuerung von Werkzeugmaschinen aus der Edge-Cloud
  • Christoph Susen

    Christoph Susen studied Mechanical Engineering (B. Sc.) and Simulation Engineering (M. Sc.) at RWTH Aachen University. After graduating, he joined the Department for Automation and Control Engineering of the Chair for Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL) in 2021 as a research associate. His research interests include industrial communication technologies and real-time virtualization of programmable logic and numerical controllers.

    EMAIL logo
    , Simon Storms

    Simon Storms, M. Sc. is head of the Department for Automation and Control Engineering of the Chair for Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University. After completing his master’s degree in Automation Engineering at RWTH Aachen University, he worked at WZL as a research associate from 2014 to 2018. His research focus is human-robot collaboration.

    and Christian Brecher

    Prof. Dr.-Ing. Christian Brecher is a full professor at RWTH Aachen University and has been head of the Chair for Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL) since 2004. He also is a member of the board of directors of the Fraunhofer Institute for Production Technology (IPT) in Aachen.

Abstract

A concept has been developed which enables the virtualization and consolidation of NC controllers for machine tools. By decoupling control hardware and software, dynamic scaling of computing power depending on the complexity of the control functions becomes possible. The use of monolithic and over-dimensioned control systems, which are most often not fully exploited but no longer sufficient when new requirements arise, is avoided. Additionally, economic advantages might be exploited by consolidating multiple controllers in an edge cloud. Initial experiments have shown that purely software-based solutions on standard IT hardware are suitable for reliably achieving the required cycle times.

Zusammenfassung

Es wurde ein Konzept entwickelt, das die Virtualisierung und Konsolidierung von NC-Steuerungen für Werkzeugmaschinen ermöglicht. Durch die Entkopplung von Steuerungshardware und -software wird eine dynamische Skalierung der Rechenleistung in Abhängigkeit von der Komplexität der Steuerungsfunktionen möglich. Der Einsatz von monolithischen und überdimensionierten Steuerungen, die meist nicht voll ausgenutzt werden, aber bei neuen Anforderungen nicht mehr ausreichen, wird so vermieden. Zusätzlich können wirtschaftliche Vorteile durch die Konsolidierung mehrerer Steuerungen in einer Edge-Cloud genutzt werden. Erste Versuche haben gezeigt, dass rein Software-basierte Lösungen auf Standard-IT-Hardware geeignet sind, um die erforderlichen Zykluszeiten zuverlässig zu erreichen.


Corresponding author: Christoph Susen, Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Steinbachstraße 25, 52074 Aachen, Germany, E-mail:

Funding source: IGF (Industrielle Gemeinschaftsforschung und -entwicklung) - 22716 N/2 (ViRTNC) FVP (Forschungsvereinigung Programmiersprachen für Fertigungseinrichtungen e. V.) AiF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen e. V.)

About the authors

Christoph Susen

Christoph Susen studied Mechanical Engineering (B. Sc.) and Simulation Engineering (M. Sc.) at RWTH Aachen University. After graduating, he joined the Department for Automation and Control Engineering of the Chair for Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL) in 2021 as a research associate. His research interests include industrial communication technologies and real-time virtualization of programmable logic and numerical controllers.

Simon Storms

Simon Storms, M. Sc. is head of the Department for Automation and Control Engineering of the Chair for Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University. After completing his master’s degree in Automation Engineering at RWTH Aachen University, he worked at WZL as a research associate from 2014 to 2018. His research focus is human-robot collaboration.

Christian Brecher

Prof. Dr.-Ing. Christian Brecher is a full professor at RWTH Aachen University and has been head of the Chair for Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL) since 2004. He also is a member of the board of directors of the Fraunhofer Institute for Production Technology (IPT) in Aachen.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The IGF project 22716 N/2 (ViRTNC) of the research association FVP (Forschungsvereinigung Programmiersprachen für Fertigungseinrichtungen e. V.) was supported by the AiF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen e. V.) within the funding program IGF (Industrielle Gemeinschaftsforschung und -entwicklung) by the Federal Ministry of Economic Affairs and Climate Action (BMWK) due to a decision of the German Parliament.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. Verl, A. Lechler, S. Wesner, et al.., “An approach for a cloud-based machine tool control,” Proc. CIRP, vol. 7, pp. 682–687, 2013. https://doi.org/10.1016/j.procir.2013.06.053.Search in Google Scholar

[2] M. Keinert and A. Verl, “System platform requirements for high performance CNCs,” in Proceedings of the 22nd International Conference on Flexible Automation and Intelligent Manufacturing FAIM 2012, 2012, pp. 837–844.Search in Google Scholar

[3] M. Sprenger, H. Krause, V. Gezer, et al.., Industrial Edge Cloud: Whitepaper SF-1.1, Kaiserslautern, 2021 [Online]. Available at: https://smartfactory.de/wp-content/uploads/2021/11/SF_Whitepaper-Industrial-Edge-Cloud-WEB.pdf [accessed: Feb. 7, 2023].Search in Google Scholar

[4] J. Schlechtendahl, F. Kretschmer, and A. Lechler, “I4.0 - Totale Vernetzung von der Klemme bis zur Cloud,” in Industrie 4.0 Management, 2015. [Online]. Available at: https://shop.gito.de/media/products/0388065001543407387.pdf.Search in Google Scholar

[5] O. Givehchi, H. Trsek, and J. Jasperneite, “Cloud computing for industrial automation systems—a comprehensive overview,” in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, 2013, pp. 1–4.10.1109/ETFA.2013.6648080Search in Google Scholar

[6] O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite, “Control-as-a-service from the cloud: a case study for using virtualized PLCs,” in 2014 10th IEEE Workshop on Factory Communication Systems (WFCS 2014), Toulouse, France, 2014, pp. 1–4.10.1109/WFCS.2014.6837587Search in Google Scholar

[7] Industrielle Automatisierungssysteme – Numerische Steuerung von Maschinen – Begriffe, DIN ISO 2806, Berlin, Germany, Deutsches Institut für Normung e. V., 1996.Search in Google Scholar

[8] R. Sautter, “Numerische Steuerungen für Werkzeugmaschinen: Funktion, Programmierung, Betrieb,” in Vogel-Fachbuch Technik Automatisierung), 2nd ed. Würzburg, Vogel, 1987.Search in Google Scholar

[9] T. Rudolf and C. Brecher, “Adaptierbare Parametrierung von Diagnosesystemen durch Verwendung digitaler Antriebssignale in der Prozessüberwachung: Lehrstuhl für Werkzeugmaschinen/Werkzeugmaschinenlabor WZL der RWTH Aachen,” Apprimus-Verl. and Zugl.: Aachen, Techn. Hochsch., Diss., 2014, 2014. [Online]. Available at: http://publications.rwth-aachen.de/record/444695.Search in Google Scholar

[10] C. Brecher, Werkzeugmaschinen Fertigungssysteme 3: Mechatronische Systeme, Steuerungstechnik und Automatisierung, 9th ed. Berlin, Heidelberg, Springer, 2021, [Online]. Available at: https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6460387.10.1007/978-3-662-46569-1_2Search in Google Scholar

[11] M. Fischer, C. Müller, and C. Kolb, “Virtualisierung in der Produktionstechnik,” in Atp Magazin, 11th ed., 2020, pp. 32–34.Search in Google Scholar

[12] M. Gundall, C. Glas, and H. D. Schotten, “Feasibility study on virtual process controllers as basis for future industrial automation systems,” in 2021 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain, 2021, pp. 1080–1087.10.1109/ICIT46573.2021.9453651Search in Google Scholar

[13] T. Cruz, P. Simoes, and E. Monteiro, “Virtualizing programmable logic controllers: towards a convergent approach,” IEEE Embed. Syst. Lett., vol. 8, no. 4, pp. 69–72, 2016. https://doi.org/10.1109/LES.2016.2608418.Search in Google Scholar

[14] F. Kretschmer, S. Friedl, A. Lechler, and A. Verl, “Communication extension for cloud-based machine control of simulated robot processes,” in 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 2016, pp. 54–58.10.1109/ICIT.2016.7474725Search in Google Scholar

[15] C. Scordino, I. Savino, L. Cuomo, et al.., “Real-time virtualization for industrial automation,” in 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 2020, pp. 353–360.10.1109/ETFA46521.2020.9211890Search in Google Scholar

[16] T. Tasci, J. Melcher, and A. Verl, “A container-based architecture for real-time control applications,” in 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, 2018, pp. 1–9.10.1109/ICE.2018.8436369Search in Google Scholar

[17] J. Schlechtendahl, F. Kretschmer, A. Lechler, and A. Verl, “Communication mechanisms for cloud based machine controls,” Proc. CIRP, vol. 17, pp. 830–834, 2014. https://doi.org/10.1016/j.procir.2014.01.074.Search in Google Scholar

[18] J. Schlechtendahl, F. Kretschmer, Z. Sang, A. Lechler, and X. Xu, “Extended study of network capability for cloud based control systems,” Robot. Comput. Integrated Manuf., vol. 43, pp. 89–95, 2017. https://doi.org/10.1016/j.rcim.2015.10.012.Search in Google Scholar

[19] J. Postel, Transmission Control Protocol: RFC 793, Marina del Rey, California, Information Sciences Institute of the University of Southern California, 1981.Search in Google Scholar

[20] E. Rescorla, HTTP Over: RFC 2818, East Palo Alto, California, RTFM, Inc, 2000.10.17487/rfc2818Search in Google Scholar

[21] Information Technology — Dynamic Adaptive streaming over HTTP (DASH), 23009-1, Geneva, Switzerland, International Organization for Standardization, 2019.Search in Google Scholar

[22] K. Berns, A. Köpper, and B. Schürmann, Technische Grundlagen Eingebetteter Systeme: Elektronik, Systemtheorie, Komponenten und Analyse (Springer eBook Collection), Wiesbaden, Springer Vieweg, 2019.10.1007/978-3-658-26516-8Search in Google Scholar

[23] A. Atutxa, D. Franco, J. Sasiain, J. Astorga, and E. Jacob, “Achieving low latency communications in smart industrial networks with programmable data planes,” Sensors, vol. 21, p. 5199, 2021. https://doi.org/10.3390/s21155199.Search in Google Scholar PubMed PubMed Central

[24] Real-Time Systems GmbH, Hypervisors in Robotics, 2022. Available at: https://www.real-time-systems.com/fileadmin/benutzerdaten/real-time-systems/pdf/RTS_Robotic_interview.pdf [accessed: Jul. 11, 2022].Search in Google Scholar

[25] Acontis technologies GmbH, Acontis Real-Time Hypervisor, 2022. Available at: https://www.acontis.com/files/flyer/hypervisor-flyer.pdf [accessed: Jul. 11, 2022].Search in Google Scholar

[26] L. Abeni and D. Faggioli, “An experimental analysis of the xen and KVM latencies,” in 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), Valencia, Spain, 2019, pp. 18–26.10.1109/ISORC.2019.00014Search in Google Scholar

[27] L. Abeni and D. Faggioli, “Using Xen and KVM as real-time hypervisors,” J. Syst. Architect., vol. 106, p. 101709, 2020. https://doi.org/10.1016/j.sysarc.2020.101709.Search in Google Scholar

[28] R. van Riel, Real-Time KVM from the Ground up, [Online]. Available at: https://wiki.linuxfoundation.org/_media/realtime/events/rt-summit2016/kvm_rik-van-riel.pdf, 2016.Search in Google Scholar

[29] C. Okwudire, S. Huggi, S. Supe, C. Huang, and B. Zeng, “Low-level control of 3D printers from the cloud: a step toward 3D printer control as a service,” Inventions, vol. 3, no. 3, p. 56, 2018. https://doi.org/10.3390/inventions3030056.Search in Google Scholar

[30] D. A. Tomzik and X. W. Xu, “Architecture of a cloud-based control system decentralised at field level,” in 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 2018, pp. 353–358.10.1109/COASE.2018.8560418Search in Google Scholar

[31] IEEE Standard for Ethernet (802.3-2018), Piscataway, NJ, USA, Institute of Electrical and Electronics Engineers, 2018.Search in Google Scholar

[32] M. Knezic, B. Dokic, and Z. Ivanovic, “Performance evaluation of the Switched EtherCAT networks with VLAN tagging,” Serb. J. Electr. Eng., vol. 9, no. 1, pp. 33–42, 2012. https://doi.org/10.2298/SJEE1201033K.Search in Google Scholar

[33] IEEE Standard for Local and Metropolitan Area Network - Bridges and Bridged Networks, Piscataway, NJ, USA, Institute of Electrical and Electronics Engineers, 2022.Search in Google Scholar

[34] IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks, Piscataway, NJ, USA, Institute of Electrical and Electronics Engineers, 2020.Search in Google Scholar

[35] IEEE Standard for Local and Metropolitan Area Networks - Bridges and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic, Piscataway, NJ, USA, Institute of Electrical and Electronics Engineers, 2015.Search in Google Scholar

[36] IEEE Standard for Local and Metropolitan Area Networks - Bridges and Bridged Networks - Amendment 26: Frame Preemption, Piscataway, NJ, USA, Institute of Electrical and Electronics Engineers, 2016.Search in Google Scholar

[37] Study CCNP, SR-IOV, PCI Passthrough, and OVS-DPDK, 2022, Available at: https://study-ccnp.com/sr-iov-pci-passthrough-ovs-dpdk/ [accessed: Nov. 11, 2022].Search in Google Scholar

[38] L. Leonardi, L. Lo Bello, and G. Patti, “Towards time-sensitive networking in heterogeneous platforms with virtualization,” in 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),, Vienna, Austria, 2020, pp. 1155–1158.10.1109/ETFA46521.2020.9212116Search in Google Scholar

[39] Open vSwitch Contributors, Open vSwitch, 2022. Available at: https://www.openvswitch.org/ [accessed: Nov. 11, 2022].Search in Google Scholar

[40] DPDK Contributors, DPDK, 2022. Available at: https://www.dpdk.org/ [accessed: Nov. 11, 2022].Search in Google Scholar

[41] M. Ghadhab, J. Kaienburg, M. Süßkraut, and C. Fetzer, “Is software coded processing an answer to the execution integrity challenge of current and future automotive software-intensive applications?” in Advanced Microsystems for Automotive Applications 2015, Lecture Notes in Mobility, T. Schulze, B. Müller, and G. Meyer, Eds., Cham, Springer International Publishing, 2016, pp. 263–275.10.1007/978-3-319-20855-8_21Search in Google Scholar

[42] Linux Foundation, The ACRN™ Open Source Hypervisor for IoT Development Announces ACRN v2.0 and Functional Safety Certification Concept Approval, 2022. Available at: https://www.linuxfoundation.org/press-release/the-acrn-open-source-hypervisor-for-iot-development-announces-acrn-v2-0-and-functional-safety-certification-concept-approval/ [accessed: Feb. 10, 2022].Search in Google Scholar

[43] Intel DPDK Validation Team, DPDK Vhost/Virtio Performance Report - Release 17.08, 2022. Available at: https://fast.dpdk.org/doc/perf/DPDK_17_08_Intel_virtio_performance_report.pdf [accessed: Nov. 11, 2022].Search in Google Scholar

[44] KVM Contributors, KVM, 2022. Available at: https://www.linux-kvm.org/page/Main_Page [accessed: Jul. 4, 2022].Search in Google Scholar

[45] libvirt Contributors, libvirt, 2022. Available at: https://libvirt.org/ [accessed: Nov. 11, 2022].Search in Google Scholar

[46] QEMU Contributors, QEMU, 2022. Available at: https://qemu.org/ [accessed: Nov. 11, 2022].Search in Google Scholar

[47] libvirt Contributors, libvirt - KVM Real Time Guest Configuration, 2022. Available at: https://libvirt.org/kbase/kvm-realtime.html [accessed: Nov. 11, 2022].Search in Google Scholar

[48] T. Hegr, M. Voznak, M. Kozak, and L. Bohac, “Measurement of switching latency in high data rate Ethernet networks,” ElAEE, vol. 21, p. 3, 2015. https://doi.org/10.5755/j01.eee.21.3.10445.Search in Google Scholar

[49] H. Øyvind (OnTime Networks AS) and S. Markus (OnTime Networks LLC), “Guaranteed end-to-end latency through Ethernet,” in 2015 European Test and Telemetry Conference (ETTC), Toulouse, France, 2015. [Online]. Available at: https://ontimenet.com/wp-content/themes/cloudberryaero/pdf/papers/ETTC2015-Guaranteed-end-to-end-latency-through-Ethernet.pdf.Search in Google Scholar

[50] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis for IEEE 802.1Qbv time sensitive networks using network calculus,” IEEE Access, vol. 6, pp. 41803–41815, 2018. https://doi.org/10.1109/ACCESS.2018.2858767.Search in Google Scholar

[51] M. Sturm, T. Henke, P. Zahn, F. Frick, and A. Lechler, Eds. TSN and OPC UA for Industrial Automation, WEKA FACHMEDIEN GmbH, 2018. Available at: www.weka-fachmedien.de.Search in Google Scholar

[52] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling real-time communication in IEEE 802.1Qbv time sensitive networks,” in Proceedings of the 24th International Conference on Real-Time Networks and Systems, A. Plantec, F. Singhoff, S. Faucou, and L. M. Pinho, Eds., Brest, France, 2016, pp. 183–192.10.1145/2997465.2997470Search in Google Scholar

[53] B. Caruso, L. Leonardi, L. Lo Bello, and G. Patti, “Design of a framework for enabling TSN support in heterogeneous platforms with virtualization and preliminary experimental results,” in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 2021, pp. 1–4.10.1109/ETFA45728.2021.9613442Search in Google Scholar

Received: 2022-11-14
Revised: 2023-02-15
Accepted: 2023-02-22
Published Online: 2023-05-08
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2022-0148/html
Scroll to top button