Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 8, 2024

Design of MIMO PI-compensators without exponentially unstable poles

Entwurf von PI-Reglern ohne exponentiell instabile Pole für Mehrgrössensysteme
  • Peter Hippe

    Peter Hippe worked as Akademischer Direktor at Lehrstuhl für Regelungstechnik of the Universität Erlangen-Nürnberg till September 2006. Main fields of interest: Control systems with plant input restrictions, design of state controllers and of MIMO compensators in the frequency domain.

    EMAIL logo

Abstract

There is a class of systems that can only be stabilized by unstable compensators. However, for most practical systems suitable for use with linear regulators, this is possible with stable ones. To avoid exponentially unstable results in the design of pole placing PI-compensators it is of crucial importance to consider the position of the transmission zeros. This also has a favourable effect on the disturbance rejection. In multi-input multi-output (MIMO) systems, however, not only the zero position but also the zero direction is of importance. In this paper, a design method for multivariable PI-controllers in the time- and in the frequency-domains is presented which helps to avoid the occurrence of exponentially unstable controllers. A modified design method for multivariable PI-controllers, recently published in this journal, facilitates the procedure.

Zusammenfassung

Es gibt Systeme, die sich nur mit Hilfe instabiler Regler stabilisieren lassen. Bei den meisten praktischen Systemen, die sich für den Einsatz von linearen Reglern eignen, ist dies jedoch mit stabilen möglich. Wenn man beobachterbasierte PI-Zustandsregler so entwerfen möchte, dass sie nicht exponentiell instabil sind, muss man die Nullstellen-Lagen der Systeme berücksichtigen. Dies wirkt sich auch günstig auf das Störverhalten aus. In Mehrgrössensystemen sind aber nicht nur die Nullstellen-Lagen, sondern auch die Nullstellen-Richtungen von Bedeutung. In diesem Beitrag wird eine Entwurfsmethode für Mehrgrössen PI-Regler im Zeit- und im Frequenzbereich vorgestellt, welche hilft, das Auftreten von exponentiell instabilen Reglern zu vermeiden. Als günstig erweist sich dabei eine modifizierte Entwurfsmethode für Mehrgrössen PI-Regler, die kürzlich in dieser Zeitschrift erschienen ist.


Corresponding author: Peter Hippe, Universität Erlangen-Nürnberg, Lehrstuhl für Regelungstechnik, D-91058 Erlangen, Germany, E-mail:

About the author

Peter Hippe

Peter Hippe worked as Akademischer Direktor at Lehrstuhl für Regelungstechnik of the Universität Erlangen-Nürnberg till September 2006. Main fields of interest: Control systems with plant input restrictions, design of state controllers and of MIMO compensators in the frequency domain.

  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] D. C. Youla, J. J. BongiornoJr., and C. N. Lu, “Single-loop feedback stabilization of linear multivariable dynamical plants,” Automatica, vol. 10, no. 2, pp. 159–173, 1974.10.1016/0005-1098(74)90021-1Search in Google Scholar

[2] B. M. Chen, A. Saberi, and P. Sannuti, “On blocking zeros and strong stabilizability of linear multivariable systems,” Automatica, vol. 28, no. 5, pp. 1051–1055, 1992. https://doi.org/10.1016/0005-1098(92)90162-9.Search in Google Scholar

[3] M. Vidyasagar, Control System Synthesis: A Factorization Approach, Part II, Cham, Switzerland, Springer Nature Switzerland AG, 2022.Search in Google Scholar

[4] P. Hippe, Windup in Control – Its Effects and Their Prevention, Berlin, Heidelberg, New York, London, Springer, 2006.Search in Google Scholar

[5] E. J. Davison, “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Trans. Automat. Control, vol. 21, no. 1, pp. 25–34, 1976. https://doi.org/10.1109/tac.1976.1101137.Search in Google Scholar

[6] E. J. Davison and A. Goldenberg, “Robust control of a general servomechanism problem: the servo-compensator,” Automatica, vol. 11, no. 5, pp. 461–471, 1975. https://doi.org/10.1016/0005-1098(75)90022-9.Search in Google Scholar

[7] J. Deutscher and G. Roppenecker, “Robust asymptotic disturbance rejection using observer-based disturbance feedforward (in German),” Automatisierungstechnik, vol. 62, no. 8, pp. 547–561, 2014. https://doi.org/10.1515/auto-2014-1104.Search in Google Scholar

[8] P. Hippe and J. Deutscher, Design of Observer-Based Compensators – From the Time to the Frequency Domain, Berlin, Heidelberg, New York, London, Springer, 2009.10.1007/978-1-84882-537-6Search in Google Scholar

[9] P. Hippe, “Simplified MIMO design of observer-based PI control in view of input saturation,” Automatisierungstechnik, vol. 71, no. 3, pp. 179–185, 2023. https://doi.org/10.1515/auto-2022-0065.Search in Google Scholar

[10] G. P. Liu and R. J. Patton, Eigenstructure Assignment for Control System Design, New York, John Wiley & Sons, 1998.Search in Google Scholar

[11] M. M. Fahmy and J. O’Reilly, “On eigenstructure assignment in linear multivariable systems,” IEEE Trans. Automat. Control, vol. 27, no. 3, pp. 690–693, 1982. https://doi.org/10.1109/tac.1982.1102995.Search in Google Scholar

[12] G. Roppenecker, Time-Domain Design of Linear Control Systems (in German), München, Oldenburg Verlag, 1990.Search in Google Scholar

[13] D. G. Luenberger, “Observers for multivariable systems,” IEEE Trans. Automat. Control, vol. 11, no. 2, pp. 190–197, 1966. https://doi.org/10.1109/tac.1966.1098323.Search in Google Scholar

[14] B. D. O. Anderson and V. Kučera, “Matrix fraction construction of linear compensators,” IEEE Trans. Automat. Control, vol. 30, no. 11, pp. 1112–1114, 1985. https://doi.org/10.1109/tac.1985.1103845.Search in Google Scholar

[15] P. J. Antsaklis and A. N. Michel, Linear Systems, New York, McGraw-Hill, 1997.Search in Google Scholar

[16] V. Kučera, Analysis and Design of Discrete Linear Control Systems, New York, Prentice Hall, 1991.Search in Google Scholar

[17] PolyX, Ltd., The Polynomial Toolbox for MATLAB®. Available at: http://www.polyx.com/.Search in Google Scholar

[18] G. Roppenecker, “Pole assignment by state feedback (in German),” Regelungstechnik, vol. 29, no. 7, pp. 228–233, 1981. https://doi.org/10.1524/auto.1981.29.112.228.Search in Google Scholar

[19] G. Roppenecker, “On parametric state feedback design,” Int. J. Control, vol. 43, no. 3, pp. 793–804, 1986. https://doi.org/10.1080/00207178608933503.Search in Google Scholar

[20] M. M. Fahmy and J. O’Reilly, “Eigenstructure assignment in linear multivariable systems – a parametric solution,” IEEE Trans. Automat. Control, vol. 28, no. 10, pp. 990–994, 1983. https://doi.org/10.1109/tac.1983.1103160.Search in Google Scholar

[21] G. Roppenecker and B. Lohmann, “Complete modal synthesis of noninteracting control systems (in German),” Automatisierungstechnik, vol. 36, no. 11, pp. 434–441, 1988. https://doi.org/10.1524/auto.1988.36.112.434.Search in Google Scholar

[22] G. Roppenecker, “Modal approach to parametric state observer design,” Electron. Lett., vol. 22, no. 3, pp. 118–120, 1986. https://doi.org/10.1049/el:19860083 10.1049/el:19860083Search in Google Scholar

[23] P. Hippe, “Design of observer-based compensators: the polynomial approach,” Kybernetica, vol. 27, no. 2, pp. 125–150, 1991.Search in Google Scholar

Received: 2023-06-29
Accepted: 2023-12-14
Published Online: 2024-04-08
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2023-0122/html
Scroll to top button