Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

Usefulness of EGI EEG system in brain computer interface research

  • Grzegorz M. Wójcik EMAIL logo , Emilia Mikołajewska , Dariusz Mikołajewski , Piotr Wierzgała , Anna Gajos and Marcin Smolira

Abstract

Despite the quick development of medicine and associated medical technology, there are still many patients with very severe neurological deficits who need far more sophisticated solutions, such as brain computer interfaces (BCIs). Our research aims at becoming familiar with BCI technology and the assessment of the possibilities of selected subjects in the area of P300-based BCI. An indirect aim is a discussion on the procedures of patient preparation for BCI installation, possible threats and limitations. Our research presents one of the possible efforts towards better documentation of investigating neural correlates of brain processing.


Corresponding author: Grzegorz M. Wójcik, Institute of Computer Science, Maria Curie-Sklodowska University, Lublin, Poland

References

1. Pei X, Hill J, Schalk G. Silent communication: toward using brain signals. IEEE Pulse 2012;3:43–6.10.1109/MPUL.2011.2175637Search in Google Scholar

2. Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. Mayo Clin Proc 2012;87:268–79.10.1016/j.mayocp.2011.12.008Search in Google Scholar

3. Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 2008;7:1032–43.10.1016/S1474-4422(08)70223-0Search in Google Scholar

4. Allison BZ, Wolpaw EW, Wolpaw JR. Brain-computer interface systems: progress and prospects. Expert Rev Med Devices 2007;4:463–74.10.1586/17434440.4.4.463Search in Google Scholar

5. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol 2002;113:767–91.10.1016/S1388-2457(02)00057-3Search in Google Scholar

6. Rossini PM, Noris Ferilli MA, Ferreri F. Cortical plasticity and brain computer interface. Eur J Phys Rehabil Med 2012;48:307–12.Search in Google Scholar

7. Bashashati A, Fatourechi M, Ward RK, Birch GE. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 2007;4:R32–57.10.1088/1741-2560/4/2/R03Search in Google Scholar PubMed

8. Wierzgała P, Wójcik GM. Finding the best efficiency in ActionScript based web applications on example of FFT algorithm. Bio-Algorithms Med-Syst 2012;8:373–85.10.1515/bams-2012-0027Search in Google Scholar

9. EGI Geodesic EEG System (GES) 300. Available from: http://www.egi.com/research-division-research-products/eeg-systems. Accessed on 20 November, 2012.Search in Google Scholar

10. Hu X, Pornpattananangkul N, Rosenfeld JP. N200 and P300 as orthogonal and integrable indicators of distinct awareness and recognition processes in memory detection. Psychophysiology 2013;50:454–64.10.1111/psyp.12018Search in Google Scholar PubMed

11. Pires G, Nunes U, Castelo-Branco M. Comparison of a row-column speller vs. a novel lateral single-character speller: assessment of BCI for severe motor disabled patients. Clin Neurophysiol 2012;123:1168–81.10.1016/j.clinph.2011.10.040Search in Google Scholar PubMed

12. Fazel-Rezai R, Allison BZ, Guger C, Sellers EW, Kleih SC, Kübler A. P300 brain computer interface: current challenges and emerging trends. Front Neuroeng 2012;5:14.10.3389/fneng.2012.00014Search in Google Scholar PubMed PubMed Central

13. Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, et al. How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 2009;462:94–8.10.1016/j.neulet.2009.06.045Search in Google Scholar PubMed

14. Lehembre R, Gosseries O, Lugo Z, Jedidi Z, Chatelle C, Sadzot B, et al. Electrophysiological investigations of brain function in coma, vegetative and minimally conscious patients. Arch Ital Biol 2012;150:122–39.Search in Google Scholar

15. Kübler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 2008;119:2658–66.10.1016/j.clinph.2008.06.019Search in Google Scholar PubMed PubMed Central

16. Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer F, et al. Transition from the locked in to the completely locked-in state: a physiological analysis. Clin Neurophysiol 2011;122: 925–33.10.1016/j.clinph.2010.08.019Search in Google Scholar PubMed

17. Bruno MA, Vanhaudenhuyse A, Thibaut A, Moonen G, Laureys S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol 2011;258:1373–84.10.1007/s00415-011-6114-xSearch in Google Scholar PubMed

18. Gosseries O, Schnakers C, Ledoux D, Vanhaudenhuyse A, Bruno MA, Demertzi A, et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct Neurol 2011;26:25–30.Search in Google Scholar

19. McFarland DJ, Sarnacki WA, Wolpaw JR. Should the parameters of a BCI translation algorithm be continually adapted? J Neurosci Methods 2011;199:103–7.10.1016/j.jneumeth.2011.04.037Search in Google Scholar PubMed PubMed Central

20. Breshears JD, Gaona CM, Roland JL, Sharma M, Anderson NR, Bundy DT, et al. Decoding motor signals from the pediatric cortex: implications for brain-computer interfaces in children. Pediatrics 2011;128:e160–8.10.1542/peds.2010-1519Search in Google Scholar PubMed

21. Roland J, Miller K, Freudenburg Z, Sharma M, Smyth M, Gaona C, et al. The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. J Neural Eng 2011;8:046013.10.1088/1741-2560/8/4/046013Search in Google Scholar PubMed

22. Wireless Ultra Low Power Broadband Neural Recording Microsystem, Brown University. Available from: http://nurmikko.engin.brown.edu/?q=node/1. Accessed on 20 November, 2012.Search in Google Scholar

23. Heinz A, Kipke R, Heimann H, Wiesing U. Cognitive neuroenhancement: false assumptions in the ethical debate. J Med Ethics 2012;38:372–5.10.1136/medethics-2011-100041Search in Google Scholar PubMed

24. Shaw DM. Neuroenhancers, addiction and research ethics. J Med Ethics 2012;38:605–8.10.1136/medethics-2012-100616Search in Google Scholar PubMed

25. Warvick K. I, cyborg. Champaign: University of Illinois Press, 2004.Search in Google Scholar

26. van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012;336:1182–5.10.1126/science.1217416Search in Google Scholar PubMed

27. Domenici N, Keller U, Vallery H, Friedli L, van den Brand R, Starkey ML, et al. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat Med 2012;18:1142–7.10.1038/nm.2845Search in Google Scholar PubMed

28. Ruffini G, Dunne S, Farrés E, Watts PC, Mendoza E, Silva SR, et al. ENOBIO – First tests of a dry electrophysiology electrode using carbon nanotubes. In: Proceedings of 28th Annual International Conference of the IEEE, August 2006, pp. 1826–9.10.1109/IEMBS.2006.259248Search in Google Scholar PubMed

29. Durka PJ. Matching pursuit and unification in EEG analysis. Boston, London: Artech House, 2007.10.4249/scholarpedia.2288Search in Google Scholar

Received: 2013-1-4
Accepted: 2013-4-22
Published Online: 2013-05-31
Published in Print: 2013-06-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/bams-2013-0007/html
Scroll to top button