Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 29, 2013

Depth map color constancy

  • Marc Ebner EMAIL logo and Johannes Hansen

Abstract

A human observer is able to determine the color of objects independent of the light illuminating these objects. This ability is known as color constancy. In the first stages of visual information processing, data are analyzed with respect to wavelength composition, orientation, motion, and depth. With this contribution, we investigate whether depth information can help in estimating the color of the objects. We assume that local space average color is computed in V4 through resistively coupled neurons to estimate the color of the illuminant. We show how this computational model can be extended to incorporate depth information.


Corresponding author: Marc Ebner, Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germany, Phone: +49-3834-86-4646, Fax: +49-3834-86-4640, E-mail:

References

1. McCann JJ. Simultaneous contrast and color constancy: signatures of human image processing. In: Davis S, editor. Color perception: philosophical, psychological, artistic, and computational perspectives. Volume 9. Vancouver studies in cognitive science. Oxford: Oxford University Press, 2000: 87–101.Search in Google Scholar

2. McCann JJ, McKee SP, Taylor TH. Quantitative studies in retinex theory. Vis Res 1976;16:445–58.10.1016/0042-6989(76)90020-1Search in Google Scholar

3. Zeki S. A vision of the brain. Oxford: Blackwell Science, 1993.Search in Google Scholar

4. Ebner M. Color constancy. England: John Wiley & Sons, 2007.10.1002/9780470510490Search in Google Scholar

5. Brainard DH, Freeman WT. Bayesian color constancy. J Opt Soc Am A 1997;14:1393–411.10.1364/JOSAA.14.001393Search in Google Scholar

6. Finlayson GD, Hordley SD. Color constancy at a pixel. J Opt Soc Am A 2001;18:253–64.10.1364/JOSAA.18.000253Search in Google Scholar

7. Finlayson GD, Hordley S, Pubel PM. Color by correlation: a simple, unifying framework for color constancy. IEEE Trans Pattern Anal Machine Intell 2001;23:1209–21.10.1109/34.969113Search in Google Scholar

8. Forsyth DA. A novel algorithm for color constancy. Int J Comput Vis 1990;5:5–36.10.1007/BF00056770Search in Google Scholar

9. Funt BV, Drew MS, Ho J. Color constancy from mutual reflection. Int J Comput Vis 1991;6:5–24.10.1007/BF00127123Search in Google Scholar

10. Geusebroek JM, van den Boomgaard R, Smeulders AW, Geerts H. Color invariance. IEEE Trans Pattern Anal Machine Intell 2001;23:1338–50.10.1109/34.977559Search in Google Scholar

11. Funt B, Cardei V, Barnard K. Learning color constancy. In: Proceedings of the IS&T/SID Fourth Color Imaging Conference, Scottsdale, 1996:58–60.Search in Google Scholar

12. Hurlbert AC, Poggio TA. Synthesizing a color algorithm from examples. Science 1988;239:482–3.10.1126/science.3340834Search in Google Scholar PubMed

13. Cardei VC, Funt B. Committee-based color constancy. In: Proceedings of the IS&T/SID Seventh Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, AZ, 1999:311–3.Search in Google Scholar

14. Lu R, Gijsenij A, Gevers T, Nedović V, Xu D, Geusebroek JM. Color constancy using 3d scene geometry. In: Proceedings of the 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009:1749–56.Search in Google Scholar

15. Barnard K, Cardei V, Funt B. A comparison of computational color constancy algorithms – part I: methodology and experiments with synthesized data. IEEE Trans Image Process 2002;11:972–84.10.1109/TIP.2002.802531Search in Google Scholar PubMed

16. Barnard K, Martin L, Coath A, Funt B. A comparison of computational color constancy algorithms – part II: experiments with image data. IEEE Trans Image Process 2002;11:985–96.10.1109/TIP.2002.802529Search in Google Scholar

17. Funt B, Barnard K, Martin L. Is machine colour constancy good enough? In: Burkhardt H, Neumann B, editors. Fifth European Conference on Computer Vision (ECCV ‘98), Freiburg, Germany. Berlin: Springer-Verlag, 1998:445–59.Search in Google Scholar

18. Buchsbaum G. A spatial processor model for object colour perception. J Franklin Inst 1980;310:337–50.10.1016/0016-0032(80)90058-7Search in Google Scholar

19. van de Weijer J, Gevers T, Gijsenij A. Edge-based color constancy. IEEE Trans Image Process 2007;16:2207–14.10.1109/TIP.2007.901808Search in Google Scholar

20. Barnard K, Finlayson G, Funt B. Color constancy for scenes with varying illumination. Comput Vis Image Understand 1997;65:311–21.10.1006/cviu.1996.0567Search in Google Scholar

21. Land EH, McCann JJ. Lightness and retinex theory. J Opt Soc Am 1971;61:1–11.10.1364/JOSA.61.000001Search in Google Scholar

22. Blake A. Boundary conditions for lightness computation in Mondrian world. Comput Vis Graphics Image Process 1985;32:314–27.10.1016/0734-189X(85)90054-4Search in Google Scholar

23. Frankle JA, McCann JJ. Method and apparatus for lightness imaging. US Patent 4,384,336, 1983.Search in Google Scholar

24. Funt B, Ciurea F, McCann J. Retinex in MATLAB. J Electron Imaging 2004;13:48–57.10.1117/1.1636761Search in Google Scholar

25. Horn BK. Determining lightness from an image. Comput Graphics Image Process 1974;3:277–99.10.1016/0146-664X(74)90022-7Search in Google Scholar

26. Moore A, Allman J, Goodman RM. A real-time neural system for color constancy. IEEE Trans Neural Networks 1991;2:237–47.10.1109/72.80334Search in Google Scholar PubMed

27. Land EH. An alternative technique for the computation of the designator in the retinex theory of color vision. Proc Natl Acad Sci USA 1986;83:3078–80.10.1073/pnas.83.10.3078Search in Google Scholar PubMed PubMed Central

28. Gijsenij A, Lu R, Gevers T. Color constancy for multiple light sources. IEEE Trans Image Process 2012;21:697–707.10.1109/TIP.2011.2165219Search in Google Scholar

29. Ebner M. Color constancy based on local space average color. Machine Vis Appl J 2009;20:283–301.10.1007/s00138-008-0126-2Search in Google Scholar

30. Ebner M. A computational model for color perception. Bio-Algorithms Med-Syst 2012;8:387–415.10.1515/bams-2012-0028Search in Google Scholar

31. Ebner M. Estimating the color of the illuminant using anisotropic diffusion. In: Kropatsch WG, Kampel M, Hanbury A, editors. Proceedings of the 12th International Conference on Computer Analysis of Images and Patterns, August 27–29, 2007, Vienna, Austria. Berlin: Springer-Verlag, 2007:441–9.Search in Google Scholar

32. Horn BK. Robot vision. Cambridge, MA: MIT Press, 1986.Search in Google Scholar

33. Jain R, Kasturi R, Schunck BG. Machine vision. New York: McGraw-Hill, 1995.Search in Google Scholar

34. Szeliski R. Computer vision. Berlin: Springer, 2010.10.1007/978-1-84882-935-0Search in Google Scholar

35. Microsoft Corporation. Programming with the Kinect for Windows SDK. Redmond, WA: Microsoft Corporation, 2011.Search in Google Scholar

36. Ebner M. A parallel algorithm for color constancy. J Parallel Distrib Comput 2004;64:79–88.10.1016/j.jpdc.2003.06.004Search in Google Scholar

37. Ebner M. How does the brain arrive at a color constant descriptor? In: Mele F, Ramella G, Santillo S, Ventriglia F, editors. Proceedings of the 2nd International Symposium on Brain, Vision and Artificial Intelligence, October 10–12, 2007, Naples, Italy. Berlin: Springer, 2007:84–93.Search in Google Scholar

38. Tovée MJ. An introduction to the visual system. Cambridge: Cambridge University Press, 1996.Search in Google Scholar

39. Gegenfurtner KR. Cortical mechanisms of colour vision. Nat Rev Neurosci 2003;4:563–72.10.1038/nrn1138Search in Google Scholar

40. Dartnall HJ, Bowmaker JK, Mollon JD. Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc R Soc Lond B 1983;220:115–30.10.1098/rspb.1983.0091Search in Google Scholar

41. Dowling JE. The retina: an approachable part of the brain. Cambridge, MA: The Belknap Press of Harvard University Press, 1987.Search in Google Scholar

42. Livingstone MS, Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 1984;4:309–56.10.1523/JNEUROSCI.04-01-00309.1984Search in Google Scholar

43. Herault J. A model of colour processing in the retina of vertebrates: from photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 1996;12:113–29.10.1016/0925-2312(95)00114-XSearch in Google Scholar

44. Kofler M. Inbetriebahme und Untersuchung des Kinect Sensors. Master’s thesis. Österreich: FH Oberösterreich, 2011.Search in Google Scholar

45. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, et al. Kinectfusion: real-time dense surface mapping and tracking. In: Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE, 2011:127–36.Search in Google Scholar

46. Gabel M, Gilad-Bachrach R, Renshaw E, Schuster A. Full body gait analysis with Kinect. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA. New York: IEEE, 2012:1964–7.Search in Google Scholar

47. Andersen MR, Jensen T, Lisouski P, Mortensen AK, Hansen MK, Gregersen T, et al. Kinect depth sensor evaluation for computer vision applications. Tech Rep ECE-TR-6. Denmark: Aarhus University, 2012.Search in Google Scholar

Received: 2013-9-9
Accepted: 2013-10-18
Published Online: 2013-11-29
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/bams-2013-0152/html
Scroll to top button