Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2017

Nonlocal Convection-Diffusion Problems on Bounded Domains and Finite-Range Jump Processes

  • Marta D’Elia , Qiang Du ORCID logo , Max Gunzburger EMAIL logo and Richard Lehoucq ORCID logo

Abstract

A nonlocal convection-diffusion model is introduced for the master equation of Markov jump processes in bounded domains. With minimal assumptions on the model parameters, the nonlocal steady and unsteady state master equations are shown to be well-posed in a weak sense. Then the nonlocal operator is shown to be the generator of finite-range nonsymmetric jump processes and, when certain conditions on the model parameters hold, the generators of finite and infinite activity Lévy and Lévy-type jump processes are shown to be special instances of the nonlocal operator.

Award Identifier / Grant number: DE-NA-0003525

Award Identifier / Grant number: FA9550-14-1-0073

Funding source: Army Research Office

Award Identifier / Grant number: W911NF-15-1-0562

Award Identifier / Grant number: HR0011619523

Award Identifier / Grant number: DE-SC0009324

Award Identifier / Grant number: DMS-1315259

Award Identifier / Grant number: 1868-A017-15

Funding statement: The research of Marta D’Elia and Richard Lehoucq is supported by the Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration contract number DE-NA-0003525. The research of Qiand Du is supported in part by the U.S. Air Force Office of Scientific Research MURI Center for Material Failure Prediction Through Peridynamics grant number FA9550-14-1-0073, the U.S. Army Research Office grant W911NF-15-1-0562, and the U.S. Defense Advanced Research Projects Agency EQUIPS Program grant contract and award HR0011619523 and 1868-A017-15 through the Oak Ridge National Laboratory. The research of Max Gunzburger is supported in part by the U.S. Department of Energy Advanced Scientific Computing Research grant DE-SC0009324, the U.S. National Science Foundation Division of Mathematical Sciences grant DMS-1315259, and the U.S. Defense Advanced Research Projects Agency EQUIPS Program grant contract and award HR0011619523 and 1868-A017-15 through the Oak Ridge National Laboratory.

References

[1] B. Aksoylu and M. L. Parks, Variational theory and domain decomposition for nonlocal problems, Appl. Math. Comput. 217 (2011), no. 14, 6498–6515. 10.1016/j.amc.2011.01.027Search in Google Scholar

[2] B. Alali, K. Liu and M. Gunzburger, A generalized nonlocal vector calculus, Z. Angew. Math. Phys. 66 (2015), no. 5, 2807–2828. 10.1007/s00033-015-0514-1Search in Google Scholar

[3] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Math. Surveys Monogr. 165, American Mathematical Society, Providence, 2010. 10.1090/surv/165Search in Google Scholar

[4] J.-P. Aubin, Applied Functional Analysis, 2nd ed., Pure Appl. Math. (New York), Wiley, New York, 2000. 10.1002/9781118032725Search in Google Scholar

[5] B. Baeumer and M. M. Meerschaert, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math. 233 (2010), no. 10, 2438–2448. 10.1016/j.cam.2009.10.027Search in Google Scholar

[6] C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math. Soc. 284 (1984), no. 2, 617–649. 10.1090/S0002-9947-1984-0743736-0Search in Google Scholar

[7] P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, J. Stat. Phys. 95 (1999), no. 5–6, 1119–1139. 10.1023/A:1004514803625Search in Google Scholar

[8] F. Bobaru and M. Duangpanya, The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transfer 53 (2010), no. 19–20, 4047–4059. 10.1016/j.ijheatmasstransfer.2010.05.024Search in Google Scholar

[9] A. Buades, B. Coll and J. M. Morel, Image denoising methods. A new nonlocal principle, SIAM Rev. 52 (2010), no. 1, 113–147. 10.1137/090773908Search in Google Scholar

[10] N. Burch, M. D’Elia and R. Lehoucq, The exit-time problem for a markov jump process, Eur. Phys. J. Special Topics 223 (2014), 3257–3271. 10.1140/epjst/e2014-02331-7Search in Google Scholar

[11] N. Burch and R. Lehoucq, Classical, nonlocal, and fractional diffusion equations on bounded domains, Int. J. Multiscale Comput. Eng. 9 (2011), 661–674. 10.1615/IntJMultCompEng.2011002402Search in Google Scholar

[12] N. Burch and R. B. Lehoucq, Computing the exit-time for a finite-range symmetric jump process, Monte Carlo Methods Appl. 21 (2015), no. 2, 139–152. 10.1515/mcma-2014-0015Search in Google Scholar

[13] M. N. Burr, Continuous-Time Random Walks, Their Scaling Limits, and Connections with Stochastic Integration, ProQuest LLC, Ann Arbor, 2010. Search in Google Scholar

[14] X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 9–12, 1237–1250. 10.1016/j.cma.2010.10.014Search in Google Scholar

[15] M. D’Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl. 66 (2013), no. 7, 1245–1260. 10.1016/j.camwa.2013.07.022Search in Google Scholar

[16] M. D’Elia and M. Gunzburger, Optimal distributed control of nonlocal steady diffusion problems, SIAM J. Control Optim. 52 (2014), no. 1, 243–273. 10.1137/120897857Search in Google Scholar

[17] Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev. 54 (2012), no. 4, 667–696. 10.1137/110833294Search in Google Scholar

[18] Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci. 23 (2013), no. 3, 493–540. 10.1142/S0218202512500546Search in Google Scholar

[19] Q. Du, Z. Huang and R. B. Lehoucq, Nonlocal convection-diffusion volume-constrained problems and jump processes, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 4, 961–977. 10.3934/dcdsb.2014.19.961Search in Google Scholar

[20] Q. Du, L. Ju, L. Tian and K. Zhou, A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models, Math. Comp. 82 (2013), no. 284, 1889–1922. 10.1090/S0025-5718-2013-02708-1Search in Google Scholar

[21] Q. Du, J. R. Kamm, R. B. Lehoucq and M. L. Parks, A new approach for a nonlocal, nonlinear conservation law, SIAM J. Appl. Math. 72 (2012), no. 1, 464–487. 10.1137/110833233Search in Google Scholar

[22] Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 2, 217–234. 10.1051/m2an/2010040Search in Google Scholar

[23] V. J. Ervin and J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in d, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 256–281. 10.1002/num.20169Search in Google Scholar

[24] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 1998. Search in Google Scholar

[25] M. Felsinger, M. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z. 279 (2015), no. 3–4, 779–809. 10.1007/s00209-014-1394-3Search in Google Scholar

[26] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, Springer, Berlin (2003), 153–191. 10.1007/978-3-662-05281-5_3Search in Google Scholar

[27] G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul. 6 (2007), no. 2, 595–630. 10.1137/060669358Search in Google Scholar

[28] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005–1028. 10.1137/070698592Search in Google Scholar

[29] M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul. 8 (2010), no. 5, 1581–1598. 10.1137/090766607Search in Google Scholar

[30] J.-G. Liu and L. Mieussens, Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit, SIAM J. Numer. Anal. 48 (2010), no. 4, 1474–1491. 10.1137/090772770Search in Google Scholar

[31] Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput. 42 (2010), no. 2, 185–197. 10.1007/s10915-009-9320-2Search in Google Scholar

[32] M. Meerschaert, D. Benson and B. Bäumer, Multidimensional advection and fractional dispersion, Phys. Rev. E 59 (1999), 5026–5028. 10.1103/PhysRevE.59.5026Search in Google Scholar PubMed

[33] M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter Stud. Math. 43, Walter de Gruyter & Co., Berlin, 2012. 10.1515/9783110258165Search in Google Scholar

[34] T. Mengesha and Q. Du, Analysis of a scalar nonlocal peridynamic model with a sign changing kernel, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), no. 5, 1415–1437. 10.3934/dcdsb.2013.18.1415Search in Google Scholar

[35] L. Rosasco, M. Belkin and E. De Vito, On learning with integral operators, J. Mach. Learn. Res. 11 (2010), 905–934. Search in Google Scholar

[36] S. Salsa, Partial Differential Equations in Action, Universitext, Springer, Milan, 2008. Search in Google Scholar

[37] P. Seleson, M. L. Parks, M. Gunzburger and R. B. Lehoucq, Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul. 8 (2009), no. 1, 204–227. 10.1137/09074807XSearch in Google Scholar

[38] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 (2000), no. 1, 175–209. 10.1016/S0022-5096(99)00029-0Search in Google Scholar

[39] H. Tian, L. Ju and Q. Du, Nonlocal convection-diffusion problems and finite element approximations, Comput. Methods Appl. Mech. Engrg. 289 (2015), 60–78. 10.1016/j.cma.2015.02.008Search in Google Scholar

[40] H. Tian, L. Ju and Q. Du, A conservative nonlocal convection-diffusion model and asymptotically compatible finite difference discretization, Comput. Methods Appl. Mech. Engrg. 320 (2017), 46–67. 10.1016/j.cma.2017.03.020Search in Google Scholar

[41] F. Xu, M. Gunzburger and J. Burkardt, A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions, Comput. Methods Appl. Mech. Engrg. 307 (2016), 117–143. 10.1016/j.cma.2016.04.020Search in Google Scholar

[42] F. Xu, M. Gunzburger, J. Burkardt and Q. Du, A multiscale implementation based on adaptive mesh refinement for the nonlocal peridynamics model in one dimension, Multiscale Model. Simul. 14 (2016), no. 1, 398–429. 10.1137/15M1010300Search in Google Scholar

Received: 2017-5-10
Revised: 2017-8-7
Accepted: 2017-8-8
Published Online: 2017-8-31
Published in Print: 2017-10-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.3.2025 from https://www.degruyter.com/document/doi/10.1515/cmam-2017-0029/html
Scroll to top button