Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 18, 2019

A Reduced Crouzeix–Raviart Immersed Finite Element Method for Elasticity Problems with Interfaces

  • Gwanghyun Jo ORCID logo and Do Young Kwak ORCID logo EMAIL logo

Abstract

The purpose of this paper is to develop a reduced Crouzeix–Raviart immersed finite element method (RCRIFEM) for two-dimensional elasticity problems with interface, which is based on the Kouhia–Stenberg finite element method (Kouhia et al. 1995) and Crouzeix–Raviart IFEM (CRIFEM) (Kwak et al. 2017). We use a P 1 -conforming like element for one of the components of the displacement vector, and a P 1 -nonconforming like element for the other component. The number of degrees of freedom of our scheme is reduced to two thirds of CRIFEM. Furthermore, we can choose penalty parameters independent of the Poisson ratio. One of the penalty parameters depends on Lamé’s second constant μ, and the other penalty parameter is independent of both μ and λ. We prove the optimal order error estimates in piecewise H 1 -norm, which is independent of the Poisson ratio. Numerical experiments show optimal order of convergence both in L 2 and piecewise H 1 -norms for all problems including nearly incompressible cases.

MSC 2010: 65N12; 65N30

Award Identifier / Grant number: No.2017R1D1A1B03032765

Funding statement: Do Y. Kwak is supported by NRF, contract No.2017R1D1A1B03032765.

A Appendix

We prove Proposition 3.1. Suppose a typical interface element T has vertices at A ( 0 , 0 ) , B ( 1 , 0 ) and C ( 0 , 1 ) . Assume that the interface meets with the edges at D = ( x 0 , 0 ) and E = ( 0 , y 0 ) (Figure 6). Other cases can be treated similarly.

Figure 6 
                  A typical reference interface triangle.
Figure 6

A typical reference interface triangle.

Let 𝐜 i = ( a i + , b i + , c i + , a i - , b i - , c i - ) ( i = 1 , 2 ) be the coefficients of ϕ ^ in (3.1). Then conditions (3.2a), (3.2b) and (3.2c) give rise to

( A 𝟎 𝟎 B ) ( 𝐜 1 𝐜 2 ) = ( 𝐠 1 𝐠 2 ) ,

where 5 × 6 matrices A and B are respectively given by

(A.1) ( 1 1 2 1 2 0 0 0 1 - y 0 0 1 2 ( 1 - y 0 2 ) y 0 0 1 2 y 0 2 1 - x 0 1 2 ( 1 - x 0 2 ) 0 x 0 1 2 x 0 2 0 - 1 - x 0 0 1 x 0 0 - 1 0 - y 0 1 0 y 0 ) , ( 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 x 0 0 - 1 - x 0 0 1 0 y 0 - 1 0 - y 0 ) .

Here, 𝐠 1 = [ R 1 , R 2 , R 3 , 0 , 0 ] and 𝐠 2 = [ V 1 , V 2 , V 3 , 0 , 0 ] T , where R i is the edge average of the first component of ϕ ^ and V i is the nodal value of the second component. Furthermore, condition (3.2d) is written as

(A.2) ( 𝐝 1 T 𝐝 2 T 𝐞 1 T 𝐞 2 T ) ( 𝐜 1 𝐜 2 ) = ( 0 0 ) ,

where 𝐧 = ( n 1 , n 2 ) = ( y 0 / x 0 2 + y 0 2 , x 0 / x 0 2 + y 0 2 ) and

𝐝 1 T = ( 0 , ( 2 μ + + λ + ) n 1 , μ + n 2 , 0 , - ( 2 μ - + λ - ) n 1 , - μ - n 2 ) :- ( d 1 i ) i = 1 6 ,
𝐝 2 T = ( 0 , μ + n 2 , λ + n 1 , 0 , - μ - n 2 , - λ - n 1 ) :- ( d 2 i ) i = 1 6 ,
𝐞 1 T = ( 0 , λ + n 2 , μ + n 1 , 0 , - λ - n 2 , - μ - n 1 ) :- ( e 1 i ) i = 1 6 ,
𝐞 2 T = ( 0 , μ + n 1 , ( 2 μ + + λ + ) n 2 , 0 , - μ - n 1 , - ( 2 μ - + λ - ) n 2 ) :- ( e 2 i ) i = 1 6 .

Arranging the equations (A.1) and (A.2), we get the 12-by-12 systems

M :- ( A 𝟎 𝐝 1 T 𝐝 2 T 𝟎 B 𝐞 1 T 𝐞 2 T ) ( 𝐜 1 𝐜 2 ) = ( 𝐠 1 0 𝐠 2 0 ) .

It suffices to show that the determinant of M is nonzero. By adding columns 6, 5 and 4 to 3, 2 and 1, respectively, and using the row eliminations, we see that the determinant of M is the same as the determinant of the matrix

M :- ( U 0 𝐎 0 d ¯ 66 𝐝 2 T 𝐎 0 B 0 e ¯ 16 𝐞 2 T ) , where U :- ( 1 1 2 1 2 0 0 0 - 1 2 0 y 0 0 0 0 - 1 2 x 0 1 2 x 0 2 0 0 0 1 x 0 0 0 0 0 - x 0 ) .

Here, d ¯ 66 and e ¯ 66 satisfy

x 0 d ¯ 66 = - n 1 y 0 { ( 2 μ + + λ + ) x 0 y 0 + ( 2 μ - + λ - ) ( 1 - x 0 y 0 ) } - x 0 n 2 { μ + x 0 y 0 + μ - ( 1 - x 0 y 0 ) } ,
x 0 e ¯ 16 = - n 2 y 0 { λ + x 0 y 0 + λ - ( 1 - x 0 y 0 ) } - n 2 x 0 { μ + x 0 y 0 + μ - ( 1 - x 0 y 0 ) } .

By applying row operations to rows 7–12 of M , we have

M ′′ :- ( U 0 𝐎 0 d ¯ 66 𝐝 2 T 𝐎 0 C 0 e ¯ 16 ) , where C :- ( 1 1 0 0 0 0 0 - 1 1 0 0 0 0 0 0 1 0 0 0 0 x 0 - 1 0 - x 0 0 0 0 y 0 - 1 0 0 - y 0 0 0 e 22 + e 23 0 e 25 e 26 ) .

Here, it is easy to see that

x 0 2 + y 0 2 det ( C ) = y 0 2 ( x 0 μ + + ( 1 - x 0 ) μ - ) + 2 x 0 2 ( y 0 μ + + ( 1 - y 0 ) μ - ) + x 0 2 ( y 0 λ + + ( 1 - y 0 ) λ - ) .

Lemma A.1.

The determinant of M is given by

det ( M ) = det ( U ) { d ¯ 66 det ( C ) + e ¯ 16 cofac } ,

where

cofac = det ( 0 μ + n 2 λ + n 1 0 - μ - n 2 - λ - n 1 1 1 0 0 0 0 0 - 1 1 0 0 0 0 0 0 1 0 0 0 0 x 0 - 1 0 - x 0 0 0 0 y 0 - 1 0 0 - y 0 ) = - det ( μ + n 2 λ + n 1 - μ - n 2 - λ - n 1 - 1 1 0 0 0 x 0 - 1 - x 0 0 0 y 0 - 1 0 - y 0 ) = x 0 y 0 ( μ + n 2 + λ + n 1 ) + ( 1 - x 0 ) y 0 μ - n 2 + λ - n 1 ( 1 - y 0 ) x 0 .

Proof.

This can be obtained by expanding the determinants with respect to column 7 of M ′′ . ∎

Proposition A.2.

The determinant of M is always positive.

Proof.

This can be proven directly by Lemma A.1 and the fact that

det ( U ) < 0 , det ( C ) > 0 , d ¯ 66 < 0 , e ¯ 16 < 0 , cofac > 0 .

References

[1] C. Bacuta and J. H. Bramble, Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains, Z. Angew. Math. Phys. 54 (2003), no. 5, 874–878. 10.1007/s00033-003-3211-4Search in Google Scholar

[2] R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 41–44, 3352–3360. 10.1016/j.cma.2009.06.017Search in Google Scholar

[3] T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999), 601–620. 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-SSearch in Google Scholar

[4] T. Belytschko, C. Parimi, N. Moës, N. Sukumar and S. Usui, Structured extended finite element methods for solids defined by implicit surfaces, Int. J. Numer. Methods Eng. 56 (2003), 609–635. 10.2172/15004927Search in Google Scholar

[5] J. H. Bramble and J. T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math. 6 (1996), no. 2, 109–138. 10.1007/BF02127700Search in Google Scholar

[6] S. C. Brenner, Korn’s inequalities for piecewise H 1 vector fields, Math. Comp. 73 (2004), no. 247, 1067–1087. 10.1090/S0025-5718-03-01579-5Search in Google Scholar

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York, 1991. 10.1007/978-1-4612-3172-1Search in Google Scholar

[8] K. S. Chang and D. Y. Kwak, Discontinuous bubble scheme for elliptic problems with jumps in the solution, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 5–8, 494–508. 10.1016/j.cma.2010.06.029Search in Google Scholar

[9] S.-H. Chou, D. Y. Kwak and K. T. Wee, Optimal convergence analysis of an immersed interface finite element method, Adv. Comput. Math. 33 (2010), no. 2, 149–168. 10.1007/s10444-009-9122-ySearch in Google Scholar

[10] P. G. Ciarlet, Mathematical Elasticity. Vol. I, Stud. Math. Appl. 20, North-Holland, Amsterdam, 1988. Search in Google Scholar

[11] R. S. Falk, Nonconforming finite element methods for the equations of linear elasticity, Math. Comp. 57 (1991), no. 196, 529–550. 10.1090/S0025-5718-1991-1094947-6Search in Google Scholar

[12] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 17–18, 1895–1908. 10.1016/S0045-7825(01)00358-9Search in Google Scholar

[13] P. Hansbo and M. G. Larson, Discontinuous Galerkin and the Crouzeix–Raviart element: Application to elasticity, M2AN Math. Model. Numer. Anal. 37 (2003), no. 1, 63–72. 10.1051/m2an:2003020Search in Google Scholar

[14] S. Jin, D. Y. Kwak and D. Kyeong, A consistent immersed finite element method for the interface elasticity problems, Adv. Math. Phys. 2016 (2016), Article ID 3292487. 10.1155/2016/3292487Search in Google Scholar

[15] G. Jo and D. Y. Kwak, Geometric multigrid algorithms for elliptic interface problems using structured grids, Numer. Algorithms 81 (2019), no. 1, 211–235. 10.1007/s11075-018-0544-9Search in Google Scholar

[16] R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124 (1995), no. 3, 195–212. 10.1016/0045-7825(95)00829-PSearch in Google Scholar

[17] P. Krysl and T. Belytschko, An efficient linear-precision partition of unity basis for unstructured meshless methods, Comm. Numer. Methods Engrg. 16 (2000), no. 4, 239–255. 10.1002/(SICI)1099-0887(200004)16:4<239::AID-CNM322>3.0.CO;2-WSearch in Google Scholar

[18] D. Y. Kwak, S. Jin and D. Kyeong, A stabilized P 1 -nonconforming immersed finite element method for the interface elasticity problems, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 1, 187–207. 10.1051/m2an/2016011Search in Google Scholar

[19] D. Y. Kwak and J. Lee, A modified P 1 -immersed finite elemnent method, Int. J. Pure Appl. Math. 104 (2015), 471–494. 10.12732/ijpam.v104i3.14Search in Google Scholar

[20] D. Y. Kwak, K. T. Wee and K. S. Chang, An analysis of a broken P 1 -nonconforming finite element method for interface problems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2117–2134. 10.1137/080728056Search in Google Scholar

[21] D. Kyeong and D. Y. Kwak, An immersed finite element method for the elasticity problems with displacement jump, Adv. Appl. Math. Mech. 9 (2017), no. 2, 407–428. 10.4208/aamm.2016.m1427Search in Google Scholar

[22] G. Legrain, N. Moës and E. Verron, Stress analysis around crack tips in finite strain problems using the eXtended finite element method, Internat. J. Numer. Methods Engrg. 63 (2005), no. 2, 290–314. 10.1002/nme.1291Search in Google Scholar

[23] D. Leguillon and E. Sánchez-Palencia, Computation of Singular Solutions in Elliptic Problems and Elasticity, John Wiley & Sons, Chichester, 1987. Search in Google Scholar

[24] Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability, Numer. Methods Partial Differential Equations 20 (2004), no. 3, 338–367. 10.1002/num.10092Search in Google Scholar

[25] Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math. 96 (2003), no. 1, 61–98. 10.1007/s00211-003-0473-xSearch in Google Scholar

[26] T. Lin, Y. Lin and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal. 53 (2015), no. 2, 1121–1144. 10.1137/130912700Search in Google Scholar

[27] N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg. 46 (1999), no. 1, 131–150. 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-JSearch in Google Scholar

[28] B. Rivière and M. F. Wheeler, Optimal error estimates for discontinuous Galerkin methods applied to linear elasticity problems, Comput. Math. Appl 46 (2000), 141–163. 10.1016/S0898-1221(03)90086-1Search in Google Scholar

[29] R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988), no. 5, 513–538. 10.1007/BF01397550Search in Google Scholar

[30] M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates, Numer. Math. 41 (1983), no. 1, 39–53. 10.1007/BF01396304Search in Google Scholar

Received: 2019-03-09
Revised: 2019-06-15
Accepted: 2019-09-04
Published Online: 2019-09-18
Published in Print: 2020-07-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2019-0046/html
Scroll to top button