Home An 𝐿𝑝-DPG Method with Application to 2D Convection-Diffusion Problems
Article
Licensed
Unlicensed Requires Authentication

An 𝐿𝑝-DPG Method with Application to 2D Convection-Diffusion Problems

  • Jiaqi Li ORCID logo EMAIL logo and Leszek Demkowicz ORCID logo
Published/Copyright: March 26, 2022

Abstract

This article summarizes the Lp -DPG method presented in [18], where only 1D convection-diffusion problems are solved. We apply the same computational techniques to 2D convection-diffusion problems and report additional numerical results herein. Furthermore, we propose an Lp -DPG method with variable 𝑝 and illustrate it with numerical experiments.

MSC 2010: 65N30

Award Identifier / Grant number: 1819101

Funding statement: J. Li and L. Demkowicz were partially supported with NSF grant No. 1819101.

References

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University, Cambridge, 2004. 10.1017/CBO9780511804441Search in Google Scholar

[2] D. Breit, L. Diening and S. Schwarzacher, Finite element approximation of the p() -Laplacian, SIAM J. Numer. Anal. 53 (2015), no. 1, 551–572. 10.1137/130946046Search in Google Scholar

[3] C. Carstensen, L. Demkowicz and J. Gopalakrishnan, A posteriori error control for DPG methods, SIAM J. Numer. Anal. 52 (2014), no. 3, 1335–1353. 10.1137/130924913Search in Google Scholar

[4] C. Carstensen, L. Demkowicz and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations, Comput. Math. Appl. 72 (2016), no. 3, 494–522. 10.1016/j.camwa.2016.05.004Search in Google Scholar

[5] J. Chan, J. A. Evans and W. Qiu, A dual Petrov–Galerkin finite element method for the convection-diffusion equation, Comput. Math. Appl. 68 (2014), no. 11, 1513–1529. 10.1016/j.camwa.2014.07.008Search in Google Scholar

[6] A. J. Chen and Y. Kallinderis, Adaptive hybrid (prismatic–tetrahedral) grids for incompressible flows, Internat. J. Numer. Methods Fluids 26 (1998), no. 9, 1085–1105. 10.2514/6.1996-293Search in Google Scholar

[7] L. Demkowicz, Various variational formulations and closed range theorem, ICES Report 15-03, The University of Texas at Austin, 2015. Search in Google Scholar

[8] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differential Equations 27 (2011), no. 1, 70–105. 10.1002/num.20640Search in Google Scholar

[9] L. Demkowicz and J. Gopalakrishnan, Encyclopedia of Computational Mechanics, 2nd ed., Wiley, New York, 2018. Search in Google Scholar

[10] L. Demkowicz and N. Heuer, Robust DPG method for convection-dominated diffusion problems, SIAM J. Numer. Anal. 51 (2013), no. 5, 2514–2537. 10.1137/120862065Search in Google Scholar

[11] L. Demkowicz and P. Zanotti, Construction of DPG Fortin operators revisited, Comput. Math. Appl. 80 (2020), no. 11, 2261–2271. 10.1016/j.camwa.2020.07.020Search in Google Scholar

[12] H. Egger and J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems, IMA J. Numer. Anal. 30 (2010), no. 4, 1206–1234. 10.1093/imanum/drn083Search in Google Scholar

[13] K. Eriksson and C. Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp. 60 (1993), no. 201, 167–188. 10.1090/S0025-5718-1993-1149289-9Search in Google Scholar

[14] J. Gopalakrishnan and W. Qiu, An analysis of the practical DPG method, Math. Comp. 83 (2014), no. 286, 537–552. 10.1090/S0025-5718-2013-02721-4Search in Google Scholar

[15] P. Houston, I. Muga, S. Roggendorf and K. G. van der Zee, The convection-diffusion-reaction equation in non-Hilbert Sobolev spaces: A direct proof of the inf-sup condition and stability of Galerkin’s method, Comput. Methods Appl. Math. 19 (2019), no. 3, 503–522. 10.1515/cmam-2018-0198Search in Google Scholar

[16] P. Houston, S. Roggendorf and K. G. van der Zee, Eliminating Gibbs phenomena: A non-linear Petrov–Galerkin method for the convection-diffusion-reaction equation, Comput. Math. Appl. 80 (2020), no. 5, 851–873. 10.1016/j.camwa.2020.03.025Search in Google Scholar

[17] P. Houston, S. Roggendorf and K. G. van der Zee, Gibbs phenomena for Lq -best approximation in finite element spaces, ESAIM Math. Model. Numer. Anal. 56 (2022), no. 1, 177–211. 10.1051/m2an/2021086Search in Google Scholar

[18] J. Li and L. Demkowicz, An Lp-DPG method for the convection-diffusion problem, Comput. Math. Appl. 95 (2021), 172–185. 10.1016/j.camwa.2020.08.013Search in Google Scholar

[19] I. Muga and K. G. van der Zee, Discretization of linear problems in Banach spaces: residual minimization, nonlinear Petrov–Galerkin, and monotone mixed methods, SIAM J. Numer. Anal. 58 (2020), no. 6, 3406–3426. 10.1137/20M1324338Search in Google Scholar

[20] J. T. Oden and L. F. Demkowicz, Applied Functional Analysis, 3rd ed., CRC Press, Boca Raton, 2018. Search in Google Scholar

[21] S. Roggendorf, Eliminating the Gibbs phenomenon: The non-linear Petrov–Galerkin method for the convection-diffusion-reaction equation, PhD thesis, University of Nottingham, 2019. Search in Google Scholar

[22] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo and V. M. Calo, A class of discontinuous Petrov–Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D, J. Comput. Phys. 230 (2011), no. 7, 2406–2432. 10.1016/j.jcp.2010.12.001Search in Google Scholar

Received: 2021-08-25
Revised: 2021-12-27
Accepted: 2022-03-07
Published Online: 2022-03-26
Published in Print: 2022-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.4.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmam-2021-0158/html
Scroll to top button