Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 22, 2022

A Discontinuous Galerkin Method for the Stationary Boussinesq System

  • Eligio Colmenares EMAIL logo , Ricardo Oyarzúa and Francisco Piña

Abstract

In this work we present and analyze a finite element scheme yielding discontinuous Galerkin approximations to the solutions of the stationary Boussinesq system for the simulation of non-isothermal flow phenomena. The model consists of a Navier–Stokes-type system, describing the velocity and the pressure of the fluid, coupled to an advection-diffusion equation for the temperature. The proposed numerical scheme is based on the standard interior penalty technique and an upwind approach for the nonlinear convective terms and employs the divergence-conforming Brezzi–Douglas–Marini (BDM) elements of order k for the velocity, discontinuous elements of order k - 1 for the pressure and discontinuous elements of order k for the temperature. Existence and uniqueness results are shown and stated rigorously for both the continuous problem and the discrete scheme, and optimal a priori error estimates are also derived. Numerical examples back up the theoretical expected convergence rates as well as the performance of the proposed technique.


Dedicated to the memory of Francisco-Javier Sayas


Funding statement: This research was partially supported by ANID-Chile through the pojects Fondecyt 11190241, Anillo of Computational Mathematics for Desalination Processes (ACT210087), and by Centro de Modelamiento Matemático (ACE210010 and FB210005); and by Universidad del Bío-Bío through VRIP-UBB project 2120173 GI/C.

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amsterdam) 140, Elsevier/Academic, Amsterdam, 2003. Search in Google Scholar

[2] K. Allali, A priori and a posteriori error estimates for Boussinesq equations, Int. J. Numer. Anal. Model. 2 (2005), no. 2, 179–196. Search in Google Scholar

[3] J. A. Almonacid, G. N. Gatica and R. Oyarzúa, A posteriori error analysis of a mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity, J. Sci. Comput. 78 (2019), no. 2, 887–917. 10.1007/s10915-018-0810-ySearch in Google Scholar

[4] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. 10.1137/0719052Search in Google Scholar

[5] C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier–Stokes et de la chaleur: le modèle et son approximation par éléments finis, RAIRO Modél. Math. Anal. Numér. 29 (1995), no. 7, 871–921. 10.1051/m2an/1995290708711Search in Google Scholar

[6] J. Boussinesq, Théorie de l’écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section, Nabu Press, Berlin, 2010. Search in Google Scholar

[7] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. 10.1007/978-0-387-70914-7Search in Google Scholar

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York, 1991. 10.1007/978-1-4612-3172-1Search in Google Scholar

[9] A. Çıbık and S. Kaya, A projection-based stabilized finite element method for steady-state natural convection problem, J. Math. Anal. Appl. 381 (2011), no. 2, 469–484. 10.1016/j.jmaa.2011.02.020Search in Google Scholar

[10] B. Cockburn, G. Kanschat and D. Schotzau, A locally conservative LDG method for the incompressible Navier–Stokes equations, Math. Comp. 74 (2005), no. 251, 1067–1095. 10.1090/S0025-5718-04-01718-1Search in Google Scholar

[11] B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations, J. Sci. Comput. 31 (2007), no. 1–2, 61–73. 10.1007/s10915-006-9107-7Search in Google Scholar

[12] E. Colmenares, G. N. Gatica and R. Oyarzúa, A posteriori error analysis of an augmented fully–mixed formulation for the stationary Boussinesq problem, Comput. Math. Appl. 77 (2019), no. 3, 693–714. 10.1016/j.camwa.2018.10.009Search in Google Scholar

[13] E. Colmenares and M. Neilan, Dual–mixed formulations for the stationary Boussinesq problem, Comput. Math. Appl. 72 (2016), 1828–1850. 10.1016/j.camwa.2016.08.011Search in Google Scholar

[14] T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software 30 (2004), no. 2, 196–199. 10.1145/992200.992206Search in Google Scholar

[15] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. 10.1007/978-3-642-22980-0Search in Google Scholar

[16] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. 10.1007/978-1-4757-4355-5Search in Google Scholar

[17] M. Farhloul, S. Nicaise and L. Paquet, A refined mixed finite element method for the Boussinesq equations in polygonal domains, IMA J. Numer. Anal. 21 (2001), no. 2, 525–551. 10.1093/imanum/21.2.525Search in Google Scholar

[18] K. J. Galvin, A. Linke, L. G. Rebholz and N. E. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Comput. Methods Appl. Mech. Engrg. 237/240 (2012), 166–176. 10.1016/j.cma.2012.05.008Search in Google Scholar

[19] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. 10.1007/978-3-642-61623-5Search in Google Scholar

[20] V. Girault, B. Rivière and M. F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems, Math. Comp. 74 (2005), no. 249, 53–84. 10.1090/S0025-5718-04-01652-7Search in Google Scholar

[21] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 17–18, 1895–1908. 10.1016/S0045-7825(01)00358-9Search in Google Scholar

[22] F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), no. 3–4, 251–265. 10.1515/jnum-2012-0013Search in Google Scholar

[23] J. S. Howell and N. J. Walkington, Dual-mixed finite element methods for the Navier–Stokes equations, ESAIM Math. Model. Numer. Anal. 47 (2013), no. 3, 789–805. 10.1051/m2an/2012050Search in Google Scholar

[24] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York (1974), 89–145. 10.1016/B978-0-12-208350-1.50008-XSearch in Google Scholar

[25] A. Linke, Collision in a cross-shaped domain—a steady 2d Navier–Stokes example demonstrating the importance of mass conservation in CFD, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 41–44, 3278–3286. 10.1016/j.cma.2009.06.016Search in Google Scholar

[26] H. Morimoto, On the existence of weak solutions of equation of natural convection, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 1, 87–102. Search in Google Scholar

[27] H. Morimoto, On the existence and uniqueness of the stationary solution to the equations of natural convection, Tokyo J. Math. 14 (1991), no. 1, 217–226. 10.3836/tjm/1270130501Search in Google Scholar

[28] R. Oyarzúa, T. Qin and D. Schötzau, An exactly divergence-free finite element method for a generalized Boussinesq problem, IMA J. Numer. Anal. 34 (2014), no. 3, 1104–1135. 10.1093/imanum/drt043Search in Google Scholar

[29] R. Oyarzúa and M. Serón, A divergence-conforming DG-mixed finite element method for the stationary Boussinesq problem, J. Sci. Comput. 85 (2020), no. 1, Paper No. 14. 10.1007/s10915-020-01317-7Search in Google Scholar

[30] R. Oyarzúa and P. Zúñiga, Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters, J. Comput. Appl. Math. 323 (2017), 71–94. 10.1016/j.cam.2017.04.009Search in Google Scholar

[31] V. Perfilov, A. Ali and V. Fila, A general predictive model for direct contact membrane distillation, Desalination, 445 (2018), 181–196. 10.1016/j.desal.2018.08.002Search in Google Scholar

[32] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math. 23, Springer, Berlin, 1994. 10.1007/978-3-540-85268-1Search in Google Scholar

[33] D. J. Tritton, Physical Fluid Dynamics, Van Nostrand Reinhold, New York, 1977. 10.1007/978-94-009-9992-3Search in Google Scholar

[34] C. Waluga, Analysis of hybrid discontinuous Galerkin methods for incompressible flow problems, Ph.D. Thesis, RWTH Aachen, Aachen, 2012. Search in Google Scholar

[35] Y. Zhang, Y. Hou and H. Zuo, A posteriori error estimation and adaptive computation of conduction convection problems, Appl. Math. Model. 35 (2011), no. 5, 2336–2347. 10.1016/j.apm.2010.11.033Search in Google Scholar

Received: 2022-01-16
Revised: 2022-06-09
Accepted: 2022-06-11
Published Online: 2022-07-22
Published in Print: 2022-10-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2022-0021/html
Scroll to top button