Home Simultaneous Inversion of the Space-Dependent Source Term and the Initial Value in a Time-Fractional Diffusion Equation
Article
Licensed
Unlicensed Requires Authentication

Simultaneous Inversion of the Space-Dependent Source Term and the Initial Value in a Time-Fractional Diffusion Equation

  • Shuang Yu , Zewen Wang and Hongqi Yang EMAIL logo
Published/Copyright: February 8, 2023

Abstract

The inverse problem for simultaneously identifying the space-dependent source term and the initial value in a time-fractional diffusion equation is studied in this paper. The simultaneous inversion is formulated into a system of two operator equations based on the Fourier method to the time-fractional diffusion equation. Under some suitable assumptions, the conditional stability of simultaneous inversion solutions is established, and the exponential Tikhonov regularization method is proposed to obtain the good approximations of simultaneous inversion solutions. Then the convergence estimations of inversion solutions are presented for a priori and a posteriori selections of regularization parameters. Finally, numerical experiments are conducted to illustrate effectiveness of the proposed method.

MSC 2010: 35R30; 35R11; 47A52

Award Identifier / Grant number: 2020B1212060032

Award Identifier / Grant number: 11571386

Award Identifier / Grant number: 11961002

Award Identifier / Grant number: 12171248

Award Identifier / Grant number: 20212ACB201001

Funding statement: The work of S. Yu is supported in part by the NSF of China under grant 11961002. The work of S. Yu and H. Yang is supported in part by the Key-Area Research and Development Program of Guangdong Province (No. 2021B0101190003), by Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2020B1212060032), by the NSF of China under grant 11571386. The work of Z. Wang is supported in part by the NSF of China under grants 11961002 and 12171248, and by Jiangxi Provincial Natural Science Foundation (20212ACB201001).

A Proofs of Theorems 1–3

Proof of Theorem 1

From (3.3) and the Hölder inequality, we have

f2=+n=1(λnEα,1(λnTα2)Eα,1(λnTα1)(Eα,1(λnT2α)g1,nEα,1(λnT1α)g2,n))2(+n=1(λnEα,1(λnTα2)Eα,1(λnTα2)Eα,1(λnTα1))γ+2(g1,nEα,1(λnTα1)Eα,1(λnTα2)g2,n)2)2γ+2×(+n=1(g1,nEα,1(λnTα1)Eα,1(λnTα2)g2,n)2)γγ+2(+n=11(1Eα,1(λnTα1)Eα,1(λnTα2))γλγnf2n)2γ+2((+n=1(g1,n)2)12+(+n=1(Eα,1(λnTα1)Eα,1(λnTα2)g2,n)2)12)2γγ+2.f2=+n=1(λnEα,1(λnTα2)Eα,1(λnTα1)(Eα,1(λnTα2)g1,nEα,1(λnTα1)g2,n))2(+n=1(λnEα,1(λnTα2)Eα,1(λnTα2)Eα,1(λnTα1))γ+2(g1,nEα,1(λnTα1)Eα,1(λnTα2)g2,n)2)2γ+2×(+n=1(g1,nEα,1(λnTα1)Eα,1(λnTα2)g2,n)2)γγ+2(+n=11(1Eα,1(λnTα1)Eα,1(λnTα2))γλγnf2n)2γ+2((+n=1(g1,n)2)12+(+n=1(Eα,1(λnTα1)Eα,1(λnTα2)g2,n)2)12)2γγ+2.

From Lemmas 13, we get

Eα,1(λ1Tα1)Eα,1(λ1Tα2)Eα,1(λnTα1)Eα,1(λnTα2)andEα,1(λnTα1)Eα,1(λnTα2)limnEα,1(λnTα1)Eα,1(λnTα2)=(T2T1)α.Eα,1(λ1Tα1)Eα,1(λ1Tα2)Eα,1(λnTα1)Eα,1(λnTα2)andEα,1(λnTα1)Eα,1(λnTα2)limnEα,1(λnTα1)Eα,1(λnTα2)=(T2T1)α.

Obviously, λγnexp(λγn)λγnexp(λγn) holds. By the assumption of a priori condition (3.4) and the notation

C3:=(1Eα,1(λ1Tα1)Eα,1(λ1Tα2)1)2γγ+2,C3:=(1Eα,1(λ1Tα1)Eα,1(λ1Tα2)1)2γγ+2,

we have

f2C3M4γ+2(g1+(T2T1)αg2)2γγ+2.f2C3M4γ+2(g1+(T2T1)αg2)2γγ+2.

Similarly, we get

φ2=+n=1((1Eα,1(λnT1α))g2,n(1Eα,1(λnT2α))g1,nEα,1(λnTα2)Eα,1(λnTα1))2(+n=1(1Eα,1(λnTα1)Eα,1(λnTα2)Eα,1(λnTα1))γ+2(g2,n1Eα,1(λnTα2)1Eα,1(λnTα1)g1,n)2)2γ+2×(+n=1(g2,n1Eα,1(λnTα2)1Eα,1(λnTα1)g1,n)2)γγ+2(+n=1(1Eα,1(λnTα1)Eα,1(λnTα2)Eα,1(λnTα1))γφ2n)2γ+2((+n=1(g2,n)2)12+(+n=1(1Eα,1(λnTα2)1Eα,1(λnTα1)g1,n)2)12)2γγ+2.φ2=+n=1((1Eα,1(λnTα1))g2,n(1Eα,1(λnTα2))g1,nEα,1(λnTα2)Eα,1(λnTα1))2(+n=1(1Eα,1(λnTα1)Eα,1(λnTα2)Eα,1(λnTα1))γ+2(g2,n1Eα,1(λnTα2)1Eα,1(λnTα1)g1,n)2)2γ+2×(+n=1(g2,n1Eα,1(λnTα2)1Eα,1(λnTα1)g1,n)2)γγ+2(+n=1(1Eα,1(λnTα1)Eα,1(λnTα2)Eα,1(λnTα1))γφ2n)2γ+2((+n=1(g2,n)2)12+(+n=1(1Eα,1(λnTα2)1Eα,1(λnTα1)g1,n)2)12)2γγ+2.

In addition, from Lemma 4, there exists a constant C>0C>0 such that

(+n=1(1Eα,1(λnTα1)Eα,1(λnTα2)Eα,1(λnTα1))γφ2n)2γ+2(+n=1(Γ(1α)(1+λnTα2)C1(1Eα,1(λnTα1)Eα,1(λnTα2)))γφ2n)2γ+2(+n=1(Γ(1α)(C+Tα2)C1(1Eα,1(λnTα1)Eα,1(λnTα2)))γλγnφ2n)2γ+2.(+n=1(1Eα,1(λnTα1)Eα,1(λnTα2)Eα,1(λnTα1))γφ2n)2γ+2(+n=1(Γ(1α)(1+λnTα2)C1(1Eα,1(λnTα1)Eα,1(λnTα2)))γφ2n)2γ+2(+n=1(Γ(1α)(C+Tα2)C1(1Eα,1(λnTα1)Eα,1(λnTα2)))γλγnφ2n)2γ+2.

Denoting

C4:=(Γ(1α)(C+Tα2)C1(Eα,1(λ1Tα1)Eα,1(λ1Tα2)1))2γγ+2,C4:=(Γ(1α)(C+Tα2)C1(Eα,1(λ1Tα1)Eα,1(λ1Tα2)1))2γγ+2,

by the inequality λγnexp(λγn)λγnexp(λγn) , we have the estimate

φ2C4M4γ+2(g2+11Eα,1(λ1Tα1)g1)2γγ+2.φ2C4M4γ+2(g2+11Eα,1(λ1Tα1)g1)2γγ+2.

The proof is completed. ∎

Proof of Theorem 2

By the triangular inequality, we have

(A.1) fδβ,γffδβ,γfβ,γ+fβ,γf,fδβ,γffδβ,γfβ,γ+fβ,γf,
(A.2) φδβ,γφφδβ,γφβ,γ+φβ,γφ.φδβ,γφφδβ,γφβ,γ+φβ,γφ.

We first estimate fδβ,γffδβ,γf . For the first term on the right-hand side of inequality (A.1), there exists a constant C>0C>0 such that

(A.3) fδβ,γfβ,γ2+n=1(βexp(λγn)m11,nβexp(λγn)(m11,n)2+β2exp(2λγn))(gδ1,ng1,n)2++n=1(βexp(λγn)m21,nβexp(λγn)(m21,n)2+β2exp(2λγn))(gδ2,ng2,n)2supn|λnC2+βλγ+2n|2(n=1|gδ1,ng1,n|2+n=1|gδ2,ng2,n|2)|(1+γ)1+γ2+γ(2+γ)C2(1+γ)2+γβ12+γ|2(2δ2).fδβ,γfβ,γ2∥ ∥+n=1(βexp(λγn)m11,nβexp(λγn)(m11,n)2+β2exp(2λγn))(gδ1,ng1,n)∥ ∥2+∥ ∥+n=1(βexp(λγn)m21,nβexp(λγn)(m21,n)2+β2exp(2λγn))(gδ2,ng2,n)∥ ∥2supnλnC2+βλγ+2n2(n=1|gδ1,ng1,n|2+n=1|gδ2,ng2,n|2)(1+γ)1+γ2+γ(2+γ)C2(1+γ)2+γβ12+γ2(2δ2).

Denote

C6:=2(1+γ)1+γ2+γ(2+γ)C2(1+γ)2+γ.

From inequality (A.3), we obtain

(A.4) fδβ,γfβ,γC6δβ12+γ.

On the other hand, we get

exp(λγn)((m11,n)2+(m21,n)2)+(m11,nm22,nm21,nm12,n)2βexp(λγn)+(m12,n)2+(m22,n)2(m11,nm22,nm21,nm12,n)2m11,nm12,n+m21,nm22,n.

Lemma 3 yields

limn+λ2n(m11,nm22,nm21,nm12,n)2m11,nm12,n+m21,nm22,n=(Tα1Tα2)2Γ(1α)Tα1Tα2(Tα1+Tα2).

Therefore, there exist a constant

C5(0,((Tα1Tα2)2Γ(1α)Tα1Tα2(Tα1+Tα2))12)

satisfying

(A.5) (m11,nm22,nm21,nm12,n)2m11,nm12,n+m21,nm22,n(C5λn)2,

with constant C5 depending on parameters T1,T2 and 𝛼. We now estimate the term fβ,γf . We have

fβ,γf2+n=1βexp(λγn)fnXn(x)βexp(λγn)+C25λ2n2++n=1βexp(λγn)φnXn(x)βexp(λγn)+C25λ2n2+n=1β2exp(λγn)(βexp(λγn)+C25λ2n)2exp(λγn)|fn|2++n=1β2exp(λγn)(βexp(λγn)+C25λ2n)2exp(λγn)|φn|2supn(βexp(λγn2)βexp(λγn)+C25λ2n)2+n=1exp(λγn)|fn|2+supn(βexp(λγn2)βexp(λγn)+C25λ2n)2+n=1exp(λγn)|φn|2.

From Lemma 5 and 0<β<1 , we get

fβ,γfC7Mβ14,whereC7=max{3344(2C5),λ2N0exp(λ2N02)(2C25)}.

This inequality, combined with estimate (A.4), yields the estimate

fδβ,γfC6δβ12+γ+C7Mβ14.

By choosing the regularization parameter β=δ8+4γ6+γ , we get

fδβ,γf(C6+C7M)δ2+γ6+γ.

Similarly, when 0<β<1 , γ>0 , there exists C8 , and selecting the regularization parameter β=δ8+4γ6+γ , inequality (A.2) yields

φδβ,γφ(C6+C8M)δ2+γ6+γ.

The proof is completed. ∎

Proof of Theorem 3

For τδ defined in (4.7), there is the following inequality estimation:

τδ=K1,1(fδβ)+K2,1(φδβ)gδ1+K1,2(fδβ)+K2,2(φδβ)gδ2
=+n=1βexp(λγn)((m21,n)2+(m22,n)2+βexp(λγn))gδ1,n+βexp(λγn)(m21,nm11,n+m12,nm22,n)gδ2,n(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)Xn(x)
++n=1βexp(λγn)(m11,nm21,n+m12,nm22,n)gδ1,nβexp(λγn)((m11,n)2+(m12,n)2+βexp(λγn))gδ2,n(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)Xn(x)
4δ+2i=1(+n=1βexp(λγn)gi,nXn(x)βexp(λγn)+(m11,nm22,nm21,nm12,n)2(m12,n)2+(m22,n)2++n=1βexp(λγn)gi,nXn(x)βexp(λγn)+(m11,nm22,nm21,nm12,n)2m11,nm12,n+m21,nm22,n).
For C5 defined in (A.5), we obtain

(τ4)2δ22(+n=1βexp(λγn)m11,nfnXn(x)βexp(λγn)+(C5λn)22++n=1βexp(λγn)m12,nφnXn(x)βexp(λγn)+(C5λn)22)+2(+n=1βexp(λγn)m21,nfnXn(x)βexp(λγn)+(C5λn)22++n=1βexp(λγn)m22,nφnXn(x)βexp(λγn)+(C5λn)22)4((supnβexp(1)λ1γ2nβexp(0)λ2n+(C5)2)2+n=1λγn|fn|2+(supnβexp(1)λ2γ2nβexp(0)λ2n+(C5)2)2+n=1λγn|φn|2).

Considering different ranges of 𝛾, we have the following estimates:

supnβexp(1)λ1γ2nβλ2n+(C5)2{exp(1)(2γ)2γ4(2+γ)2+γ44(C5)2+γ4β2+γ4,0<γ<2,exp(1)λ1γ21(C5)2β,γ2,
supnβexp(1)λ2γ2nβλ2n+(C5)2{exp(1)γγ4(4γ)4γ44(C5)γ2βγ4,0<γ<4,exp(1)λ2γ21(C5)2β,γ4.
From λγnexp(λγn) and denoting

E1=((exp(1)(2γ)2γ4(2+γ)2+γ42(C5)3γ+64)2+(exp(1)γγ4(4γ)4γ42(C5)γ)2)12,E2=((2exp(1)λ1γ21(C5)4)2+(exp(1)γγ4(4γ)4γ42(C5)γ)2)12,E3=((2exp(1)λ1γ21(C5)4)2+(2exp(1)λ2γ21(C5)4)2)12,

we get

(τ4)δ{E1β2+γ4M,0<γ<2,E2βM,2γ<4,E3βM,γ4.

Therefore, denoting C9=max{E1,E2,E3} , we have the estimate

1β12+γ{(C9Mτ4)4(2+γ)2δ4(2+γ)2,0<γ<2,(C9Mτ4)12+γδ12+γ,γ2.

Then

fδβ,γfβ,γ{C6(C9Mτ4)4(2+γ)2δγ2+γ,0<γ<2,C6(C9Mτ4)12+γδ1+γ2+γ,γ2.

Similarly, the estimate for initial values is

φδβ,γφβ,γ{C6(C9Mτ4)4(2+γ)2δγ2+γ,0<γ<2,C6(C9Mτ4)12+γδ1+γ2+γ,γ2.

Furthermore,

fβ,γf2Exp+n=1(β2exp(2λγn)+βexp(λγn)((m12,n)2+(m22,n)2)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn))2exp(λγn)|fn|2++n=1(βexp(λγn)(m11,nm12,n+m21,nm22,n)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn))2exp(λγn)|φn|2+n=1exp(λγn)|fn|2++n=1exp(λγn)|φn|22(M)2.

Similarly, we have the same result on φβ,γφ2Exp . On the other hand, let

Fi(n)=mi1,nmi2,nm11,nm22,nm21,nm12,n,i=1,2.

From noise assumptions (1.2), there exists C10 such that

K1(fβ,γf,φβ,γφ)4C10δ++n=1βexp(λγn)((m21,n)2+(m22,n)2+βexp(λγn))gδ1,n+βexp(λγn)(m21,nm11,n+m12,nm22,n)gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F1(n)m22,nm12,n|++n=1βexp(λγn)(m11,nm21,n+m12,nm22,n)gδ1,nβexp(λγn)((m11,n)2+(m12,n)2+βexp(λγn))gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F1(n)|++n=1βexp(λγn)((m21,n)2+(m22,n)2+βexp(λγn))gδ1,nβexp(λγn)(m21,nm11,n+m12,nm22,n)gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F2(n)m12,nm22,n|++n=1βexp(λγn)(m11,nm21,n+m12,nm22,n)gδ1,n+βexp(λγn)((m11,n)2+(m12,n)2+βexp(λγn))gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F1(n)|.

From Lemma 3, we get

limn|F1(n)|=limn|F1(n)m22,nm12,n|=limn|F1(n)m12,nm22,n|Tα1Tα2Γ(1α)Tα1Tα2.

Therefore, by the Morozov discrepancy principle (4.7), we get

K1(fβ,γf,φβ,γφ)(4C10+2τTα1Tα2Γ(1α)Tα1Tα2)δ.

Similarly, for the operator K2 , there exists C11 such that

K2(fβ,γf,φβ,γφ)4C11δ++n=1βexp(λγn)((m21,n)2+(m22,n)2+βexp(λγn))gδ1,n+βexp(λγn)(m21,nm11,n+m12,nm22,n)gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F2(n)|++n=1βexp(λγn)(m11,nm21,n+m12,nm22,n)gδ1,nβexp(λγn)((m11,n)2+(m12,n)2+βexp(λγn))gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F2(n)m11,nm21,n|++n=1βexp(λγn)((m21,n)2+(m22,n)2+βexp(λγn))gδ1,nβexp(λγn)(m21,nm11,n+m12,nm22,n)gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F2(n)|++n=1βexp(λγn)(m11,nm21,n+m12,nm22,n)gδ1,n+βexp(λγn)((m11,n)2+(m12,n)2+βexp(λγn))gδ2,nXn(x)(m11,nm22,nm21,nm12,n)2+βexp(λγn)((m11,n)2+(m21,n)2+(m12,n)2+(m22,n)2)+β2exp(2λγn)limn|F2(n)m12,nm22,n|.

Therefore, we have

K2(fβ,γf,φβ,γφ)(4C11+2τTα1Tα2Γ(1α)Tα1Tα2)δ.

From inequality (3.5) in Theorem 1, we get

fβ,γf(C1)γγ+2fβ,γf2γ+2Exp(K1(fβ,γf,φβ,γφ)+(T2T1)αK2(fβ,γf,φβ,γφ))γγ+2C12M1γ+2δγγ+2,

where

C12=(21γC1(4(C10+Tα2Tα1C11)+2τΓ(1α)(Tα1+Tα2)Tα2Tα1Tα2))γγ+2.

And (3.6) in Theorem 1 yields

φβ,γφ(C2)γγ+2φβ,γφ2γ+2Exp(K2(fβ,γf,φβ,γφ)+11Eα,1(λ1Tα1)K1(fβ,γf,φβ,γφ))γγ+2C13M1γ+2δγγ+2,

where

C13=(21γC2(4(C11+11Eα,1(λ1Tα1)C10)+2Eα,1(λ1Tα1)1Eα,1(λ1Tα1)2τTα1Tα2Γ(1α)Tα1Tα2))γγ+2.

Therefore, denoting

C14=C6(C9Mτ4)4(2+γ)2andC15=C6(C9Mτ4)12+γ,

we have the conclusions

fδβ,γf{(C14+C12M1γ+2)δγ2+γ,0<γ<2,(C15+C12M1γ+2)δ1+γ2+γ,γ2,φδβ,γφ{(C14+C13M1γ+2)δγ2+γ,0<γ<2,(C15+C13M1γ+2)δ1+γ2+γ,γ2.

The proof is completed. ∎

References

[1] W. Audeh and F. Kittaneh, Singular value inequalities for compact operators, Linear Algebra Appl. 437 (2012), no. 10, 2516–2522. 10.1016/j.laa.2012.06.032Search in Google Scholar

[2] B. Berkowitz, H. Scher and S. E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resources Res. 36 (2000), no. 1, 149–158. 10.1029/1999WR900295Search in Google Scholar

[3] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems 25 (2009), no. 11, Article ID 115002. 10.1088/0266-5611/25/11/115002Search in Google Scholar

[4] M. Giona, S. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Phys. A 191 (1992), no. 1–4, 449–453. 10.1016/0378-4371(92)90566-9Search in Google Scholar

[5] G. Floridia, Z. Li and M. Yamamoto, Well-posedness for the backward problems in time for general time-fractional diffusion equation, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020), no. 3, 593–610. 10.4171/RLM/906Search in Google Scholar

[6] D. Hou, M. T. Hasan and C. Xu, Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math. 18 (2018), no. 1, 43–62. 10.1515/cmam-2017-0027Search in Google Scholar

[7] D. Jiang, Z. Li, Y. Liu and M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations, Inverse Problems 33 (2017), no. 5, Article ID 055013. 10.1088/1361-6420/aa58d1Search in Google Scholar

[8] S. Jiang, K. Liao and T. Wei, Inversion of the initial value for a time-fractional diffusion-wave equation by boundary data, Comput. Methods Appl. Math. 20 (2020), no. 1, 109–120. 10.1515/cmam-2018-0194Search in Google Scholar

[9] G. Li, D. Zhang, X. Jia and M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Problems 29 (2013), no. 6, Article ID 065014. 10.1088/0266-5611/29/6/065014Search in Google Scholar

[10] Z. Li, Y. Liu and M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput. 257 (2015), 381–397. 10.1016/j.amc.2014.11.073Search in Google Scholar

[11] Z. Li and M. Yamamoto, Initial-boundary value problems for linear diffusion equation with multiple time-fractional derivatives, preprint (2013), https://arxiv.org/abs/1306.2778. Search in Google Scholar

[12] K. Liao and T. Wei, Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously, Inverse Problems 35 (2019), no. 11, Article ID 115002. 10.1088/1361-6420/ab383fSearch in Google Scholar

[13] J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal. 89 (2010), no. 11, 1769–1788. 10.1080/00036810903479731Search in Google Scholar

[14] Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, Handbook of Fractional Calculus with Applications. Vol. 2, De Gruyter, Berlin (2019), 411–429. 10.1515/9783110571660-018Search in Google Scholar

[15] Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59 (2010), no. 5, 1766–1772. 10.1016/j.camwa.2009.08.015Search in Google Scholar

[16] Y. Luchko, Initial-boundary problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl. 374 (2011), no. 2, 538–548. 10.1016/j.jmaa.2010.08.048Search in Google Scholar

[17] R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion, Phys. Rev. E 61 (2000), no. 6, 6308–11. 10.1103/PhysRevE.61.6308Search in Google Scholar

[18] R. Metzler, J. Klafter and I. M. Sokolov, Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended, Phys. Rev. E 58 (1998), no. 2, 1621–33. 10.1103/PhysRevE.58.1621Search in Google Scholar

[19] V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer, New York, 2012. Search in Google Scholar

[20] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status Solidi (b) 133 (1986), no. 1, 425–430. 10.1002/pssb.2221330150Search in Google Scholar

[21] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Search in Google Scholar

[22] H. Pollard, The completely monotonic character of the Mittag-Leffler function Ea(x) , Bull. Amer. Math. Soc. 54 (1948), 1115–1116. 10.1090/S0002-9904-1948-09132-7Search in Google Scholar

[23] Z. Ruan, J. Z. Yang and X. Lu, Tikhonov regularisation method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, East Asian J. Appl. Math. 5 (2015), no. 3, 273–300. 10.4208/eajam.310315.030715aSearch in Google Scholar

[24] Z. Ruan and S. Zhang, Simultaneous inversion of time-dependent source term and fractional order for a time-fractional diffusion equation, J. Comput. Appl. Math. 368 (2020), Article ID 112566. 10.1016/j.cam.2019.112566Search in Google Scholar

[25] Z. Ruan, W. Zhang and Z. Wang, Simultaneous inversion of the fractional order and the space-dependent source term for the time-fractional diffusion equation, Appl. Math. Comput. 328 (2018), 365–379. 10.1016/j.amc.2018.01.025Search in Google Scholar

[26] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426–447. 10.1016/j.jmaa.2011.04.058Search in Google Scholar

[27] R. Schumer, D. A. Benson and M. M. Meerschaert, Fractal mobile/immobile solute transport, Water Resources Res. 39 (2003), 10.1029/2003WR002141. 10.1029/2003WR002141Search in Google Scholar

[28] I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion, Chaos 15 (2005), no. 2, Article ID 026103. 10.1063/1.1860472Search in Google Scholar PubMed

[29] Z. Wang, S. Qiu, S. Yu, B. Wu and W. Zhang, Exponential Tikhonov regularization method for solving an inverse source problem of time fractional diffusion equation, J. Comput. Math. 41 (2023), no. 2, 173–190. 10.4208/jcm.2107-m2020-0133Search in Google Scholar

[30] T. Wei, X. L. Li and Y. S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Problems 32 (2016), no. 8, Article ID 085003. 10.1088/0266-5611/32/8/085003Search in Google Scholar

[31] T. Wei and Y. Luo, A generalized quasi-boundary value method for recovering a source in a fractional diffusion-wave equation, Inverse Problems 38 (2022), no. 4, Paper No. 045001. 10.1088/1361-6420/ac50b9Search in Google Scholar

[32] J. Wen, Z.-X. Liu, C.-W. Yue and S.-J. Wang, Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, J. Appl. Math. Comput. 68 (2022), no. 5, 3219–3250. 10.1007/s12190-021-01656-0Search in Google Scholar

[33] W. Wyss, The fractional diffusion equation, J. Math. Phys. 27 (1986), no. 11, 2782–2785. 10.1063/1.527251Search in Google Scholar

[34] X. Xiong and X. Xue, A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation, Appl. Math. Comput. 349 (2019), 292–303. 10.1016/j.amc.2018.12.063Search in Google Scholar

[35] X.-B. Yan, Z.-Q. Zhang and T. Wei, Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation, Chaos Solitons Fractals 157 (2022), Paper No. 111901. 10.1016/j.chaos.2022.111901Search in Google Scholar

[36] Y. Zhang, T. Wei and Y.-X. Zhang, Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation, Numer. Methods Partial Differential Equations 37 (2021), no. 1, 24–43. 10.1002/num.22517Search in Google Scholar

Received: 2022-03-10
Revised: 2022-12-05
Accepted: 2022-12-28
Published Online: 2023-02-08
Published in Print: 2023-07-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmam-2022-0058/html
Scroll to top button