Processing math: 100%
Home A Staggered Discontinuous Galerkin Method for Quasi-Linear Second Order Elliptic Problems of Nonmonotone Type
Article
Licensed
Unlicensed Requires Authentication

A Staggered Discontinuous Galerkin Method for Quasi-Linear Second Order Elliptic Problems of Nonmonotone Type

  • Lina Zhao ORCID logo and Eun-Jae Park ORCID logo EMAIL logo
Published/Copyright: May 26, 2022

Abstract

In this paper, we present a priori and a posteriori analysis of a staggered discontinuous Galerkin (DG) method for quasi-linear second order elliptic problems of nonmonotone type. First, existence is proved by using Brouwer’s fixed point argument and uniqueness is verified utilizing Lipschitz continuity of the discrete solution map. Next, optimal a priori error estimates for both potential and flux variables are derived. Then the residual based a posteriori error estimates on the potential energy error and the flux L2 error, respectively, are proposed. The flux error estimator makes use of a Helmholtz-type decomposition for the nonlinear system, which relies on appropriate choice of an auxiliary problem. While a priori error analysis is based on the observation that the staggered DG method can be viewed as a nonconforming approximation of the primal mixed formulation of the problem, a posteriori error estimation takes advantage of the primal formulation which can be obtained from the primal mixed formulation by eliminating the flux variable in the continuous setting. Finally, the theoretical findings are illustrated by numerical experiments.

MSC 2010: 65N15; 65N30; 65N50

Award Identifier / Grant number: 7200699

Award Identifier / Grant number: NRF-2022R1A2B5B02002481

Funding statement: The first author was supported by a grant from City University of Hong Kong (Project No. 7200699). The second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (NRF-2022R1A2B5B02002481).

References

[1] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. 10.1090/S0025-5718-1985-0777265-XSearch in Google Scholar

[2] C. Bi and V. Ginting, Two-grid discontinuous Galerkin method for quasi-linear elliptic problems, J. Sci. Comput. 49 (2011), no. 3, 311–331. 10.1007/s10915-011-9463-9Search in Google Scholar

[3] C. Bi and V. Ginting, A posteriori error estimates of discontinuous Galerkin method for nonmonotone quasi-linear elliptic problems, J. Sci. Comput. 55 (2013), no. 3, 659–687. 10.1007/s10915-012-9651-2Search in Google Scholar

[4] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart–Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431–2444. 10.1137/S0036142994264079Search in Google Scholar

[5] S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. 10.1137/S0036142902401311Search in Google Scholar

[6] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980/81), no. 1, 1–25. 10.1007/BF01395985Search in Google Scholar

[7] R. Bustinza and G. N. Gatica, A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions, SIAM J. Sci. Comput. 26 (2004), no. 1, 152–177. 10.1137/S1064827502419415Search in Google Scholar

[8] R. Bustinza, G. N. Gatica and B. Cockburn, An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems, J. Sci. Comput. 22/23 (2005), 147–185. 10.1007/s10915-004-4137-5Search in Google Scholar

[9] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476. 10.1090/S0025-5718-97-00837-5Search in Google Scholar

[10] C. Carstensen and J. Hu, A unifying theory of a posteriori error control for nonconforming finite element methods, Numer. Math. 107 (2007), no. 3, 473–502. 10.1007/s00211-007-0068-zSearch in Google Scholar

[11] S. W. Cheung, E. Chung, H. H. Kim and Y. Qian, Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 302 (2015), 251–266. 10.1016/j.jcp.2015.08.024Search in Google Scholar

[12] E. T. Chung, J. Du and M. C. Yuen, An adaptive SDG method for the Stokes system, J. Sci. Comput. 70 (2017), no. 2, 766–792. 10.1007/s10915-016-0265-ySearch in Google Scholar

[13] E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for wave propagation, SIAM J. Numer. Anal. 44 (2006), no. 5, 2131–2158. 10.1137/050641193Search in Google Scholar

[14] E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions, SIAM J. Numer. Anal. 47 (2009), no. 5, 3820–3848. 10.1137/080729062Search in Google Scholar

[15] E. T. Chung and H. H. Kim, A deluxe FETI-DP algorithm for a hybrid staggered discontinuous Galerkin method for H(curl) -elliptic problems, Internat. J. Numer. Methods Engrg. 98 (2014), no. 1, 1–23. 10.1002/nme.4617Search in Google Scholar

[16] E. T. Chung, H. H. Kim and O. B. Widlund, Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method, SIAM J. Numer. Anal. 51 (2013), no. 1, 47–67. 10.1137/110849432Search in Google Scholar

[17] E. T. Chung and C. S. Lee, A staggered discontinuous Galerkin method for the convection-diffusion equation, J. Numer. Math. 20 (2012), no. 1, 1–31. 10.1515/jnum-2012-0001Search in Google Scholar

[18] E. T. Chung and C. S. Lee, A staggered discontinuous Galerkin method for the curl-curl operator, IMA J. Numer. Anal. 32 (2012), no. 3, 1241–1265. 10.1093/imanum/drr039Search in Google Scholar

[19] E. T. Chung, E.-J. Park and L. Zhao, Guaranteed a posteriori error estimates for a staggered discontinuous Galerkin method, J. Sci. Comput. 75 (2018), no. 2, 1079–1101. 10.1007/s10915-017-0575-8Search in Google Scholar

[20] E. T. Chung and W. Qiu, Analysis of an SDG method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal. 55 (2017), no. 2, 543–569. 10.1137/15M1038694Search in Google Scholar

[21] E. T. Chung, M. C. Yuen and L. Zhong, A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell’s equations, Appl. Math. Comput. 237 (2014), 613–631. 10.1016/j.amc.2014.03.134Search in Google Scholar

[22] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Search in Google Scholar

[23] J. Douglas, Jr. and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem, Math. Comp. 29 (1975), 689–696. 10.1090/S0025-5718-1975-0431747-2Search in Google Scholar

[24] L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 37–40, 2782–2795. 10.1016/j.cma.2010.03.024Search in Google Scholar

[25] A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), no. 4, A1761–A1791. 10.1137/120896918Search in Google Scholar

[26] T. Gudi, N. Nataraj and A. K. Pani, An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type, Math. Comp. 77 (2008), no. 262, 731–756. 10.1090/S0025-5718-07-02047-9Search in Google Scholar

[27] T. Gudi and A. K. Pani, Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type, SIAM J. Numer. Anal. 45 (2007), no. 1, 163–192. 10.1137/050643362Search in Google Scholar

[28] P. Houston, J. Robson and E. Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I. The scalar case, IMA J. Numer. Anal. 25 (2005), no. 4, 726–749. 10.1093/imanum/dri014Search in Google Scholar

[29] P. Houston, D. Schötzau and T. P. Wihler, Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci. 17 (2007), no. 1, 33–62. 10.1142/S0218202507001826Search in Google Scholar

[30] P. Houston, E. Süli and T. P. Wihler, A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs, IMA J. Numer. Anal. 28 (2008), no. 2, 245–273. 10.1093/imanum/drm009Search in Google Scholar

[31] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374–2399. 10.1137/S0036142902405217Search in Google Scholar

[32] O. A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM J. Numer. Anal. 45 (2007), no. 2, 641–665. 10.1137/05063979XSearch in Google Scholar

[33] D. Kim and E.-J. Park, A posteriori error estimators for the upstream weighting mixed methods for convection diffusion problems, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 6–8, 806–820. 10.1016/j.cma.2007.09.009Search in Google Scholar

[34] D. Kim and E.-J. Park, A priori and a posteriori analysis of mixed finite element methods for nonlinear elliptic equations, SIAM J. Numer. Anal. 48 (2010), no. 3, 1186–1207. 10.1137/090747002Search in Google Scholar

[35] H. H. Kim, E. T. Chung and C. S. Lee, A staggered discontinuous Galerkin method for the Stokes system, SIAM J. Numer. Anal. 51 (2013), no. 6, 3327–3350. 10.1137/120896037Search in Google Scholar

[36] K. Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp. 76 (2007), no. 257, 43–66. 10.1090/S0025-5718-06-01903-XSearch in Google Scholar

[37] K. Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic problems, Appl. Numer. Math. 57 (2007), no. 9, 1065–1080. 10.1016/j.apnum.2006.09.010Search in Google Scholar

[38] M. G. Larson and A. Må lqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems, Numer. Math. 108 (2008), no. 3, 487–500. 10.1007/s00211-007-0121-ySearch in Google Scholar

[39] A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces, Technical report NA-03/10, Oxford University Computing Laborary, Oxford, 2003. Search in Google Scholar

[40] R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), no. 4, 1394–1414. 10.1137/S0036142903433790Search in Google Scholar

[41] F. A. Milner, Mixed finite element methods for quasilinear second-order elliptic problems, Math. Comp. 44 (1985), no. 170, 303–320. 10.1090/S0025-5718-1985-0777266-1Search in Google Scholar

[42] F. A. Milner and E.-J. Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem, Math. Comp. 64 (1995), no. 211, 973–988. 10.1090/S0025-5718-1995-1303087-3Search in Google Scholar

[43] E.-J. Park, Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 3, 865–885. 10.1137/0732040Search in Google Scholar

[44] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems, Numer. Math. 69 (1994), no. 2, 213–231. 10.1007/s002110050088Search in Google Scholar

[45] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994), no. 206, 445–475. 10.1090/S0025-5718-1994-1213837-1Search in Google Scholar

[46] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner-Wiley, Stuttgart, 1996. Search in Google Scholar

[47] M. Vohralík, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111 (2008), no. 1, 121–158. 10.1007/s00211-008-0168-4Search in Google Scholar

[48] M. Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397–438. 10.1007/s10915-010-9410-1Search in Google Scholar

[49] S. Yadav, A. K. Pani and E.-J. Park, Superconvergent discontinuous Galerkin methods for nonlinear elliptic equations, Math. Comp. 82 (2013), no. 283, 1297–1335. 10.1090/S0025-5718-2013-02662-2Search in Google Scholar

[50] L. Zhao, E. T. Chung, E.-J. Park and G. Zhou, Staggered DG method for coupling of the Stokes and Darcy–Forchheimer problems, SIAM J. Numer. Anal. 59 (2021), no. 1, 1–31. 10.1137/19M1268525Search in Google Scholar

[51] L. Zhao and E.-J. Park, A staggered discontinuous Galerkin method of minimal dimension on quadrilateral and polygonal meshes, SIAM J. Sci. Comput. 40 (2018), no. 4, A2543–A2567. 10.1137/17M1159385Search in Google Scholar

[52] L. Zhao and E.-J. Park, Fully computable bounds for a staggered discontinuous Galerkin method for the Stokes equations, Comput. Math. Appl. 75 (2018), no. 11, 4115–4134. 10.1016/j.camwa.2018.03.018Search in Google Scholar

[53] L. Zhao and E.-J. Park, A new hybrid staggered discontinuous Galerkin method on general meshes, J. Sci. Comput. 82 (2020), no. 1, Paper No. 12. 10.1007/s10915-019-01119-6Search in Google Scholar

[54] L. Zhao, E.-J. Park and D.-w. Shin, A staggered DG method of minimal dimension for the Stokes equations on general meshes, Comput. Methods Appl. Mech. Engrg. 345 (2019), 854–875. 10.1016/j.cma.2018.11.016Search in Google Scholar

Received: 2022-04-01
Accepted: 2022-04-01
Published Online: 2022-05-26
Published in Print: 2022-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.5.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmam-2022-0081/html
Scroll to top button