Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 6, 2022

A Posteriori Error Estimator for Weak Galerkin Finite Element Method for Stokes Problem Using Diagonalization Techniques

  • Jiachuan Zhang , Ran Zhang EMAIL logo and Jingzhi Li

Abstract

Based on a hierarchical basis a posteriori error estimator, an adaptive weak Galerkin finite element method (WGFEM) is proposed for the Stokes problem in two and three dimensions. In this paper, we propose two novel diagonalization techniques for velocity and pressure, respectively. Using diagonalization techniques, we need only to solve two diagonal linear algebraic systems corresponding to the degree of freedom to get the error estimator. The upper bound and lower bound of the error estimator are also shown to address the reliability of the adaptive method. Numerical simulations are provided to demonstrate the effectiveness and robustness of our algorithm.

Funding statement: The work of Jiachuan Zhang was supported by the Natural Science Foundation of Jiangsu Province (No. BK20210540) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 21KJB110015). The work of Ran Zhang was supported by the National Key Research and Development Program of China (No. 2020YFA0713601). The work of Jingzhi Li was partially supported by the National Natural Science Foundation of China (No. 11971221), Guangdong NSF Major Fund (No. 2021ZDZX1001), the Shenzhen Sci-Tech Fund (No. RCJC20200714114556020, JCYJ20200109115422828 and JCYJ20190809150413261).

References

[1] S. Adjerid, M. Aiffa and J. E. Flaherty, Hierarchical finite element bases for triangular and tetrahedral elements, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 22–23, 2925–2941. 10.1016/S0045-7825(00)00273-5Search in Google Scholar

[2] J. H. Adler, X. Hu, L. Mu and X. Ye, An a posteriori error estimator for the weak Galerkin least-squares finite-element method, J. Comput. Appl. Math. 362 (2019), 383–399. 10.1016/j.cam.2018.09.049Search in Google Scholar

[3] P. F. Antonietti, L. Beirão da Veiga, C. Lovadina and M. Verani, Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems, SIAM J. Numer. Anal. 51 (2013), no. 1, 654–675. 10.1137/120873157Search in Google Scholar

[4] R. Araya, G. R. Barrenechea and A. Poza, An adaptive stabilized finite element method for the generalized Stokes problem, J. Comput. Appl. Math. 214 (2008), no. 2, 457–479. 10.1016/j.cam.2007.03.011Search in Google Scholar

[5] R. Araya, A. H. Poza and F. Valentin, On a hierarchical error estimator combined with a stabilized method for the Navier–Stokes equations, Numer. Methods Partial Differential Equations 28 (2012), no. 3, 782–806. 10.1002/num.20656Search in Google Scholar

[6] R. Araya and R. Rebolledo, An a posteriori error estimator for a LPS method for Navier–Stokes equations, Appl. Numer. Math. 127 (2018), 179–195. 10.1016/j.apnum.2017.12.018Search in Google Scholar

[7] A. K. Aziz, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972. Search in Google Scholar

[8] R. E. Bank, Hierarchical bases and the finite element method, Acta Numerica 1996, Acta Numer. 5, Cambridge University, Cambridge (1996), 1–43. 10.1017/S0962492900002610Search in Google Scholar

[9] R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993), no. 4, 921–935. 10.1137/0730048Search in Google Scholar

[10] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. 10.1090/S0025-5718-1985-0777265-XSearch in Google Scholar

[11] F. A. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188–1204. 10.1137/0733059Search in Google Scholar

[12] G. Chen, M. Feng and X. Xie, Robust globally divergence-free weak Galerkin methods for Stokes equations, J. Comput. Math. 34 (2016), no. 5, 549–572. 10.4208/jcm.1604-m2015-0447Search in Google Scholar

[13] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. 10.1137/0733054Search in Google Scholar

[14] W. Dörfler and R. H. Nochetto, Small data oscillation implies the saturation assumption, Numer. Math. 91 (2002), no. 1, 1–12. 10.1007/s002110100321Search in Google Scholar

[15] V. Eijkhout and P. Vassilevski, The role of the strengthened Cauchy–Buniakowskiĭ–Schwarz inequality in multilevel methods, SIAM Rev. 33 (1991), no. 3, 405–419. 10.1137/1033098Search in Google Scholar

[16] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica, 1995, Acta Numer., Cambridge University, Cambridge (1995), 105–158. 10.1017/S0962492900002531Search in Google Scholar

[17] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. 10.1007/978-3-642-61623-5Search in Google Scholar

[18] S. Hain, M. Ohlberger, M. Radic and K. Urban, A hierarchical a posteriori error estimator for the reduced basis method, Adv. Comput. Math. 45 (2019), no. 5–6, 2191–2214. 10.1007/s10444-019-09675-zSearch in Google Scholar

[19] W. Huang and R. D. Russell, Adaptive Moving Mesh Methods, Appl. Math. Sci. 174, Springer, New York, 2011. 10.1007/978-1-4419-7916-2Search in Google Scholar

[20] J. R. Kweon, Hierarchical basis a posteriori error estimates for compressible Stokes flows, Appl. Numer. Math. 32 (2000), no. 1, 53–68. 10.1016/S0168-9274(99)00011-2Search in Google Scholar

[21] L. Mu, Pressure robust weak Galerkin finite element methods for Stokes problems, SIAM J. Sci. Comput. 42 (2020), no. 3, B608–B629. 10.1137/19M1266320Search in Google Scholar

[22] L. Mu, J. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal. 35 (2015), no. 3, 1228–1255. 10.1093/imanum/dru026Search in Google Scholar

[23] L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math. 285 (2015), 45–58. 10.1016/j.cam.2015.02.001Search in Google Scholar

[24] L. Mu, X. Wang and X. Ye, A modified weak Galerkin finite element method for the Stokes equations, J. Comput. Appl. Math. 275 (2015), 79–90. 10.1016/j.cam.2014.08.006Search in Google Scholar

[25] R. H. Nochetto, K. G. Siebert and A. Veeser, Theory of adaptive finite element methods: An introduction, Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin (2009), 409–542. 10.1007/978-3-642-03413-8_12Search in Google Scholar

[26] X. Pang, H. Song, X. Wang and K. Zhang, An efficient numerical method for the valuation of American better-of options based on the front-fixing transform and the far field truncation, Adv. Appl. Math. Mech. 12 (2020), no. 4, 902–919. 10.4208/aamm.OA-2019-0107Search in Google Scholar

[27] C.-M. Pfeiler and D. Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem, Math. Comp. 89 (2020), no. 326, 2735–2752. 10.1090/mcom/3553Search in Google Scholar

[28] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner, Stuttgart, 1996. Search in Google Scholar

[29] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University, Oxford, 2013. 10.1093/acprof:oso/9780199679423.001.0001Search in Google Scholar

[30] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013), 103–115. 10.1016/j.cam.2012.10.003Search in Google Scholar

[31] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp. 83 (2014), no. 289, 2101–2126. 10.1090/S0025-5718-2014-02852-4Search in Google Scholar

[32] J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math. 42 (2016), no. 1, 155–174. 10.1007/s10444-015-9415-2Search in Google Scholar

[33] R. Wang, X. Wang, Q. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math. 302 (2016), 171–185. 10.1016/j.cam.2016.01.025Search in Google Scholar

[34] Q. Zhai, R. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math. 58 (2015), no. 11, 2455–2472. 10.1007/s11425-015-5030-4Search in Google Scholar

[35] J. Zhang, J. Li, J. Li and K. Zhang, An adaptive weak Galerkin finite element method with hierarchical bases for the elliptic problem, Numer. Methods Partial Differential Equations 36 (2020), no. 6, 1280–1303. 10.1002/num.22473Search in Google Scholar

[36] X. Zheng, G. Chen and X. Xie, A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows, Sci. China Math. 60 (2017), no. 8, 1515–1528. 10.1007/s11425-016-0354-8Search in Google Scholar

[37] X. Zheng and X. Xie, A posteriori error estimator for a weak Galerkin finite element solution of the Stokes problem, East Asian J. Appl. Math. 7 (2017), no. 3, 508–529. 10.4208/eajam.221216.250417aSearch in Google Scholar

[38] O. C. Zienkiewicz and A. Craig, Adaptive refinement, errorestimates, multigrid solution and hierarchical finite element method concepts, Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Lisbon 1984), Wiley Ser. Numer. Methods Engrg., Wiley, Chichester (1986), 25–59. Search in Google Scholar

[39] O. C. Zienkiewicz, D. W. Kelly, J. Gago and I. Babuška, Hierarchical finite element approaches, error estimates and adaptive refinement, The Mathematics of Finite Elements and Applications. IV, Academic Press, London (1982), 313–346. Search in Google Scholar

Received: 2022-04-11
Revised: 2022-10-18
Accepted: 2022-11-14
Published Online: 2022-12-06
Published in Print: 2023-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2022-0087/html
Scroll to top button