Abstract
Bivariate counts are collected in many sectors of research but the analysis of such data is often challenging because each series of counts may exhibit different levels and types of dispersion. This paper addresses this problem by proposing a flexible bivariate COM-Poisson model that may handle any combination of over-, equi- and under-dispersion at any levels. In this paper, the bivariate COM-Poisson is developed via Archimedean copulas. The Generalized Quasi-Likelihood (GQL) approach is used to estimate the unknown mean parameters in the copula-based bivariate COM-Poisson model while the dependence parameter is estimated using the copula likelihood. We further introduce a Monte Carlo experiment to generate bivariate COM-Poisson data under different dispersion levels. The performance of the GQL approach is assessed on the simulated data. The model is applied to analyze real-life epileptic seizures data.
A Appendix
The composite likelihood equations are the following:
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9846 | 0.9857 | 1.9822 | 1.9841 | 0.9879 | 0.9871 | 0.2841 |
(0.0701) | (0.0709) | (0.0708) | (0.0706) | (0.0607) | (0.0614) | (0.0821) | ||
C2 | 0.9862 | 0.9859 | 1.9875 | 1.9857 | 0.9851 | 0.9871 | 0.2830 | |
(0.0608) | (0.0682) | (0.0632) | (0.0613) | (0.0600) | (0.0610) | (0.0805) | ||
C3 | 0.9847 | 0.9891 | 1.9894 | 1.9847 | 0.9813 | 0.9889 | 0.2821 | |
(0.0766) | (0.0778) | (0.0711) | (0.0704) | (0.0612) | (0.0674) | (0.0882) | ||
C4 | 0.9856 | 0.9810 | 1.9826 | 1.9842 | 0.9829 | 0.9831 | 0.3117 | |
(0.0754) | (0.0752) | (0.0726) | (0.0789) | (0.0610) | (0.0627) | (0.0857) | ||
500 | C1 | 0.9973 | 0.9920 | 1.9957 | 1.9986 | 0.9901 | 0.9955 | 0.2984 |
(0.0428) | (0.0451) | (0.0462) | (0.0493) | (0.0411) | (0.0490) | (0.0645) | ||
C2 | 0.9984 | 0.9905 | 1.9927 | 1.9956 | 0.9908 | 0.9952 | 0.2974 | |
(0.0425) | (0.0442) | (0.0412) | (0.0492) | (0.0407) | (0.0483) | (0.0609) | ||
C3 | 0.9996 | 0.9941 | 1.9918 | 1.9918 | 0.9901 | 0.9960 | 0.2931 | |
(0.0499) | (0.0527) | (0.0508) | (0.0551) | (0.0549) | (0.0495) | (0.0687) | ||
C4 | 0.9925 | 0.9916 | 1.9903 | 1.9930 | 0.9920 | 0.9911 | 0.2972 | |
(0.0471) | (0.0485) | (0.0500) | (0.0523) | (0.0430) | (0.0547) | (0.0658) | ||
900 | C1 | 0.9983 | 0.9956 | 1.9973 | 1.9996 | 0.9979 | 0.9975 | 0.2990 |
(0.0258) | (0.0270) | (0.0290) | (0.0299) | (0.0222) | (0.0264) | (0.0425) | ||
C2 | 0.9998 | 0.9990 | 1.9948 | 1.9972 | 0.9972 | 0.9958 | 0.2988 | |
(0.0217) | (0.0263) | (0.0225) | (0.0292) | (0.0211) | (0.0260) | (0.0411) | ||
C3 | 0.9998 | 0.9968 | 1.9957 | 1.9977 | 0.9975 | 0.9973 | 0.2955 | |
(0.0291) | (0.0287) | (0.0361) | (0.0328) | (0.0326) | (0.0360) | (0.0475) | ||
C4 | 0.9930 | 0.9931 | 1.9907 | 1.9941 | 0.9949 | 0.9981 | 0.2984 | |
(0.0246) | (0.0311) | (0.0242) | (0.0381) | (0.0317) | (0.0369) | (0.0470) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9877 | 0.9890 | 1.9892 | 1.9806 | 0.4821 | 0.8883 | 0.2896 |
(0.0702) | (0.0701) | (0.0730) | (0.0728) | (0.0718) | (0.0701) | (0.0838) | ||
C2 | 0.9889 | 0.9813 | 1.9893 | 1.9843 | 0.4803 | 0.8844 | 0.2883 | |
(0.0655) | (0.0605) | (0.0611) | (0.0613) | (0.0619) | (0.0666) | (0.0817) | ||
C3 | 0.9897 | 0.9843 | 1.9854 | 1.9815 | 0.4835 | 0.8826 | 0.3167 | |
(0.0707) | (0.0747) | (0.0739) | (0.0764) | (0.0785) | (0.0709) | (0.0878) | ||
C4 | 0.9820 | 0.9819 | 1.9864 | 1.9895 | 0.4892 | 0.8850 | 0.2864 | |
(0.0729) | (0.0703) | (0.0760) | (0.0793) | (0.0734) | (0.0711) | (0.0866) | ||
500 | C1 | 0.9901 | 0.9927 | 1.9953 | 1.9990 | 0.4993 | 0.8951 | 0.2907 |
(0.0469) | (0.0479) | (0.0449) | (0.0438) | (0.0458) | (0.0472) | (0.0628) | ||
C2 | 0.9905 | 0.9951 | 1.9917 | 1.9925 | 0.4954 | 0.8919 | 0.2956 | |
(0.0457) | (0.0473) | (0.0412) | (0.0401) | (0.0408) | (0.0467) | (0.0620) | ||
C3 | 0.9921 | 0.9903 | 1.9934 | 1.9905 | 0.4916 | 0.8952 | 0.2975 | |
(0.0487) | (0.0483) | (0.0458) | (0.0434) | (0.0420) | (0.0545) | (0.0679) | ||
C4 | 0.9908 | 0.9902 | 1.9930 | 1.9917 | 0.4935 | 0.8901 | 0.2992 | |
(0.0549) | (0.0489) | (0.0501) | (0.0504) | (0.0502) | (0.0475) | (0.0660) | ||
900 | C1 | 0.9913 | 0.9950 | 1.9954 | 1.9998 | 0.4997 | 0.8969 | 0.2931 |
(0.0259) | (0.0227) | (0.0272) | (0.0219) | (0.0270) | (0.0288) | (0.0431) | ||
C2 | 0.9918 | 0.9969 | 1.9934 | 1.9947 | 0.4961 | 0.8956 | 0.2983 | |
(0.0255) | (0.0224) | (0.0270) | (0.0222) | (0.0264) | (0.0282) | (0.0422) | ||
C3 | 0.9965 | 0.9982 | 1.9935 | 1.9972 | 0.4924 | 0.8996 | 0.2985 | |
(0.0301) | (0.0325) | (0.0380) | (0.0311) | (0.0323) | (0.0366) | (0.0486) | ||
C4 | 0.9911 | 0.9907 | 1.9961 | 1.9926 | 0.4948 | 0.8977 | 0.2995 | |
(0.0321) | (0.0335) | (0.0363) | (0.0376) | (0.0329) | (0.0380) | (0.0466) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9871 | 0.9827 | 1.9812 | 1.9871 | 0.4830 | 1.8846 | 0.2823 |
(0.0613) | (0.0611) | (0.0600) | (0.0612) | (0.0601) | (0.0610) | (0.0844) | ||
C2 | 0.9838 | 0.9896 | 1.9815 | 1.9865 | 0.4873 | 1.1877 | 0.2887 | |
(0.0502) | (0.0535) | (0.0525) | (0.0511) | (0.0528) | (0.0518) | (0.0830) | ||
C3 | 0.9898 | 0.9885 | 1.9825 | 1.9809 | 0.4855 | 1.1810 | 0.2804 | |
(0.0673) | (0.0618) | (0.0627) | (0.0647) | (0.0617) | (0.0633) | (0.0883) | ||
C4 | 0.9863 | 0.9805 | 1.9875 | 1.9814 | 0.4829 | 1.1883 | 0.2830 | |
(0.0658) | (0.0608) | (0.0601) | (0.0696) | (0.0686) | (0.0608) | (0.0880) | ||
500 | C1 | 0.9906 | 0.9902 | 1.9957 | 1.9969 | 0.4908 | 1.1936 | 0.2932 |
(0.0508) | (0.0504) | (0.0515) | (0.0513) | (0.0512) | (0.0510) | (0.0616) | ||
C2 | 0.9901 | 0.9913 | 1.9941 | 1.9969 | 0.4902 | 1.1927 | 0.2971 | |
(0.0469) | (0.0488) | (0.0413) | (0.0498) | (0.0468) | (0.0439) | (0.0612) | ||
C3 | 0.9902 | 0.9947 | 1.9987 | 1.9903 | 0.4925 | 1.1931 | 0.2927 | |
(0.0524) | (0.0585) | (0.0581) | (0.0509) | (0.0576) | (0.0577) | (0.0696) | ||
C4 | 0.9927 | 0.9907 | 1.9911 | 1.9931 | 0.4942 | 1.1912 | 0.2930 | |
(0.0559) | (0.0548) | (0.0580) | (0.0535) | (0.0525) | (0.0541) | (0.0648) | ||
900 | C1 | 0.9910 | 0.9935 | 1.9971 | 1.9970 | 0.4929 | 1.1940 | 0.2950 |
(0.0414) | (0.0410) | (0.0416) | (0.0415) | (0.0407) | (0.0409) | (0.0415) | ||
C2 | 0.9962 | 0.9937 | 1.9985 | 1.9956 | 0.4958 | 1.1981 | 0.2983 | |
(0.0325) | (0.0324) | (0.0383) | (0.0392) | (0.0328) | (0.0344) | (0.0409) | ||
C3 | 0.9940 | 0.9988 | 1.9995 | 1.9980 | 0.4950 | 1.1938 | 0.2947 | |
(0.0460) | (0.0463) | (0.0458) | (0.0439) | (0.0423) | (0.0459) | (0.0456) | ||
C4 | 0.9989 | 0.9908 | 1.9913 | 1.9960 | 0.4969 | 1.1940 | 0.2944 | |
(0.0407) | (0.0454) | (0.0473) | (0.0435) | (0.0489) | (0.0404) | (0.0463) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9810 | 0.9892 | 1.9819 | 1.9818 | 0.8846 | 0.8858 | 0.2854 |
(0.0604) | (0.0608) | (0.0611) | (0.0616) | (0.0610) | (0.0612) | (0.0834) | ||
C2 | 0.9819 | 0.9890 | 1.9809 | 1.9853 | 0.8880 | 0.9121 | 0.2819 | |
(0.0547) | (0.0532) | (0.0585) | (0.0586) | (0.0564) | (0.0515) | (0.0817) | ||
C3 | 0.9841 | 0.9827 | 1.9884 | 1.9828 | 0.8877 | 0.9190 | 0.2890 | |
(0.0683) | (0.0665) | (0.0679) | (0.0644) | (0.0663) | (0.0610) | (0.0873) | ||
C4 | 0.9862 | 0.9873 | 1.9852 | 1.9810 | 0.8872 | 0.8873 | 0.2874 | |
(0.0605) | (0.0685) | (0.0670) | (0.0614) | (0.0613) | (0.0636) | (0.0842) | ||
500 | C1 | 0.9990 | 0.9958 | 1.9907 | 1.9967 | 0.8902 | 0.8940 | 0.2934 |
(0.0510) | (0.0509) | (0.0525) | (0.0507) | (0.0508) | (0.0504) | (0.0618) | ||
C2 | 0.9914 | 0.9923 | 1.9918 | 1.9920 | 0.8924 | 0.8959 | 0.2957 | |
(0.0496) | (0.0406) | (0.0405) | (0.0439) | (0.0443) | (0.0447) | (0.0608) | ||
C3 | 0.9901 | 0.9927 | 1.9966 | 1.9977 | 0.8928 | 0.8990 | 0.2972 | |
(0.0574) | (0.0515) | (0.0566) | (0.0532) | (0.0522) | (0.0513) | (0.0676) | ||
C4 | 0.9907 | 0.9913 | 1.9908 | 1.9912 | 0.8955 | 0.8921 | 0.2918 | |
(0.0513) | (0.0539) | (0.0524) | (0.0597) | (0.0590) | (0.0511) | (0.0641) | ||
900 | C1 | 0.9930 | 0.9951 | 1.9992 | 1.9981 | 0.8962 | 0.8962 | 0.2961 |
(0.0405) | (0.0414) | (0.0415) | (0.0418) | (0.0403) | (0.0419) | (0.0409) | ||
C2 | 0.9969 | 0.9956 | 1.9925 | 1.9964 | 0.8971 | 0.8985 | 0.2978 | |
(0.0336) | (0.0335) | (0.0393) | (0.0317) | (0.0314) | (0.0357) | (0.0401) | ||
C3 | 0.9957 | 0.9972 | 1.9986 | 1.9981 | 0.8935 | 0.9002 | 0.2984 | |
(0.0482) | (0.0442) | (0.0459) | (0.0477) | (0.0453) | (0.0489) | (0.0453) | ||
C4 | 0.9917 | 0.9921 | 1.9932 | 1.9938 | 0.9009 | 0.8955 | 0.2925 | |
(0.0425) | (0.0498) | (0.0487) | (0.0444) | (0.0453) | (0.0495) | (0.0431) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9852 | 0.9862 | 1.9883 | 1.9834 | 1.1850 | 2.9898 | 0.2894 |
(0.0628) | (0.0605) | (0.0626) | (0.0610) | (0.0617) | (0.0616) | (0.0818) | ||
C2 | 0.9887 | 0.9863 | 1.9870 | 1.9800 | 1.1889 | 2.9828 | 0.2853 | |
(0.0571) | (0.0505) | (0.0534) | (0.0551) | (0.0562) | (0.0519) | (0.0810) | ||
C3 | 0.9829 | 0.9866 | 1.9846 | 1.9806 | 1.1812 | 2.9810 | 0.2802 | |
(0.0664) | (0.0690) | (0.0619) | (0.0682) | (0.0658) | (0.0629) | (0.0869) | ||
C4 | 0.9814 | 0.9818 | 1.9871 | 1.9864 | 1.1816 | 2.9843 | 0.2872 | |
(0.0681) | (0.0640) | (0.0607) | (0.0626) | (0.0654) | (0.0624) | (0.0860) | ||
500 | C1 | 0.9916 | 0.9925 | 1.9911 | 1.9912 | 1.1951 | 2.9923 | 0.2977 |
(0.0511) | (0.0501) | (0.0508) | (0.0509) | (0.0514) | (0.0504) | (0.0629) | ||
C2 | 0.9924 | 0.9985 | 1.9922 | 1.9915 | 1.1909 | 2.9915 | 0.2922 | |
(0.0454) | (0.0480) | (0.0468) | (0.0422) | (0.0429) | (0.0485) | (0.0624) | ||
C3 | 0.9909 | 0.9905 | 1.9979 | 1.9978 | 1.1988 | 2.9977 | 0.2932 | |
(0.0562) | (0.0567) | (0.0542) | (0.0570) | (0.0504) | (0.0560) | (0.0677) | ||
C4 | 0.9950 | 0.9912 | 1.9964 | 1.9980 | 1.1901 | 2.9910 | 0.2992 | |
(0.0563) | (0.0554) | (0.0531) | (0.0530) | (0.0579) | (0.0592) | (0.0654) | ||
900 | C1 | 0.9951 | 0.9959 | 1.9928 | 1.9927 | 1.1980 | 2.9964 | 0.2980 |
(0.0408) | (0.0410) | (0.0400) | (0.0415) | (0.0413) | (0.0412) | (0.0436) | ||
C2 | 0.9930 | 0.9994 | 1.9931 | 1.9916 | 1.1926 | 2.9984 | 0.2935 | |
(0.0331) | (0.0302) | (0.0385) | (0.0369) | (0.0335) | (0.0352) | (0.0430) | ||
C3 | 0.9958 | 0.9970 | 1.9987 | 1.9989 | 1.1994 | 2.9990 | 0.2988 | |
(0.0414) | (0.0439) | (0.0455) | (0.0417) | (0.0415) | (0.0410) | (0.0451) | ||
C4 | 0.9997 | 0.9941 | 1.9998 | 1.9991 | 1.1905 | 2.9934 | 0.2995 | |
(0.0449) | (0.0410) | (0.0499) | (0.0434) | (0.0423) | (0.0482) | (0.0457) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9852 | 0.9815 | 1.9828 | 1.9803 | 1.1806 | 0.4829 | 0.2871 |
(0.0615) | (0.0612) | (0.0617) | (0.0619) | (0.0615) | (0.0612) | (0.0841) | ||
C2 | 0.9842 | 0.9831 | 1.9802 | 1.9810 | 1.1830 | 0.4899 | 0.2869 | |
(0.0567) | (0.0501) | (0.0552) | (0.0521) | (0.0513) | (0.0529) | (0.0820) | ||
C3 | 0.9890 | 0.9820 | 1.9843 | 1.9824 | 1.1808 | 0.4858 | 0.2824 | |
(0.0693) | (0.0629) | (0.0689) | (0.0603) | (0.0640) | (0.0686) | (0.0866) | ||
C4 | 0.9824 | 0.9870 | 1.9865 | 1.9833 | 1.1868 | 0.4817 | 0.2898 | |
(0.0645) | (0.0613) | (0.0630) | (0.0620) | (0.0692) | (0.0618) | (0.0855) | ||
500 | C1 | 0.9968 | 0.9920 | 1.9957 | 1.9936 | 1.1935 | 0.4960 | 0.2911 |
(0.0514) | (0.0517) | (0.0503) | (0.0516) | (0.0519) | (0.0517) | (0.0611) | ||
C2 | 0.9917 | 0.9955 | 1.9961 | 1.9929 | 1.1991 | 0.4910 | 0.2914 | |
(0.0475) | (0.0408) | (0.0414) | (0.0408) | (0.0447) | (0.0481) | (0.0605) | ||
C3 | 0.9913 | 0.9918 | 1.9965 | 1.9977 | 1.1919 | 0.4983 | 0.2984 | |
(0.0593) | (0.0560) | (0.0511) | (0.0550) | (0.0542) | (0.0575) | (0.0659) | ||
C4 | 0.9951 | 0.9956 | 1.9911 | 1.9912 | 1.1910 | 0.4937 | 0.2970 | |
(0.0543) | (0.0524) | (0.0513) | (0.0558) | (0.0554) | (0.0565) | (0.0635) | ||
900 | C1 | 0.9979 | 0.9964 | 1.9970 | 1.9948 | 1.1992 | 0.4962 | 0.2950 |
(0.0412) | (0.0416) | (0.0410) | (0.0419) | (0.0401) | (0.0404) | (0.0444) | ||
C2 | 0.9974 | 0.9961 | 1.9972 | 1.9963 | 1.1992 | 0.4984 | 0.2927 | |
(0.0339) | (0.0399) | (0.0351) | (0.0341) | (0.0398) | (0.0342) | (0.0430) | ||
C3 | 0.9980 | 0.9960 | 1.9974 | 1.9980 | 1.1961 | 0.4991 | 0.2990 | |
(0.0441) | (0.0428) | (0.0440) | (0.0490) | (0.0446) | (0.0469) | (0.0491) | ||
C4 | 0.9971 | 0.9957 | 1.9927 | 1.9924 | 1.1916 | 0.4965 | 0.2981 | |
(0.0470) | (0.0481) | (0.0412) | (0.0446) | (0.0465) | (0.0459) | (0.0467) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9896 | 0.9838 | 1.9812 | 1.9813 | 0.9892 | 0.9808 | 0.8864 |
(0.0776) | (0.0782) | (0.0742) | (0.0780) | (0.0626) | (0.06981) | (0.0824) | ||
C2 | 0.9863 | 0.9812 | 1.9860 | 1.9843 | 0.9834 | 0.9842 | 0.8861 | |
(0.0641) | (0.0633) | (0.0625) | (0.0639) | (0.0620) | (0.0670) | (0.0816) | ||
C3 | 0.9825 | 0.9818 | 1.9898 | 1.9822 | 0.9821 | 0.9801 | 0.8866 | |
(0.0791) | (0.0798) | (0.0763) | (0.0796) | (0.0657) | (0.0694) | (0.0848) | ||
C4 | 0.9878 | 0.9874 | 1.9875 | 1.9893 | 0.9811 | 0.9849 | 0.9150 | |
(0.0780) | (0.0790) | (0.0755) | (0.0789) | (0.0641) | (0.0689) | (0.0839) | ||
500 | C1 | 0.9915 | 0.9918 | 1.9942 | 1.9916 | 0.9960 | 0.9921 | 0.8919 |
(0.0444) | (0.0425) | (0.0450) | (0.0447) | (0.0422) | (0.0480) | (0.0685) | ||
C2 | 0.9912 | 0.9917 | 1.9923 | 1.9920 | 0.9949 | 0.9913 | 0.8973 | |
(0.0430) | (0.0411) | (0.0442) | (0.0439) | (0.0411) | (0.0477) | (0.0673) | ||
C3 | 0.9914 | 0.9936 | 1.9985 | 1.9966 | 0.9979 | 0.9914 | 0.8927 | |
(0.0467) | (0.0515) | (0.0526) | (0.0530) | (0.0516) | (0.0520) | (0.0697) | ||
C4 | 0.9912 | 0.9919 | 1.9981 | 1.9925 | 0.9962 | 0.9915 | 0.8985 | |
(0.0455) | (0.0433) | (0.0509) | (0.0511) | (0.0435) | (0.0515) | (0.0690) | ||
900 | C1 | 0.9990 | 0.9943 | 1.9915 | 1.9925 | 0.9910 | 0.9961 | 0.8970 |
(0.0220) | (0.0270) | (0.0260) | (0.0291) | (0.0227) | (0.0220) | (0.0427) | ||
C2 | 0.9179 | 0.9953 | 1.9949 | 1.9951 | 0.9932 | 0.9910 | 0.8977 | |
(0.0217) | (0.0263) | (0.0250) | (0.0282) | (0.0218) | (0.0209) | (0.0412) | ||
C3 | 0.9924 | 0.9909 | 1.9911 | 1.9966 | 0.9944 | 0.9993 | 0.8927 | |
(0.0250) | (0.0297) | (0.0307) | (0.0326) | (0.0330) | (0.0333) | (0.0467) | ||
C4 | 0.9953 | 0.9934 | 1.9933 | 1.9964 | 0.9970 | 0.9938 | 0.8961 | |
(0.0229) | (0.0307) | (0.0275) | (0.0312) | (0.0315) | (0.0321) | (0.0445) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9895 | 0.9810 | 1.9862 | 1.9830 | 1.1826 | 2.9869 | 0.8880 |
(0.0622) | (0.0646) | (0.0614) | (0.0685) | (0.0632) | (0.0655) | (0.0828) | ||
C2 | 0.9836 | 0.9874 | 1.9850 | 1.9825 | 1.1845 | 2.9810 | 0.8853 | |
(0.0518) | (0.0556) | (0.0545) | (0.0511) | (0.0539) | (0.0568) | (0.0814) | ||
C3 | 0.9898 | 0.9822 | 1.9897 | 1.9844 | 1.1880 | 2.9840 | 0.8870 | |
(0.0651) | (0.0667) | (0.0644) | (0.0696) | (0.0661) | (0.0687) | (0.0850) | ||
C4 | 0.9845 | 0.9853 | 1.9818 | 1.9847 | 1.1895 | 2.9875 | 0.8853 | |
(0.0636) | (0.0655) | (0.0630) | (0.0690) | (0.0647) | (0.0674) | (0.0841) | ||
500 | C1 | 0.9928 | 0.9966 | 1.9937 | 1.9923 | 1.1965 | 2.9916 | 0.8913 |
(0.0543) | (0.0547) | (0.0518) | (0.0550) | (0.0516) | (0.0510) | (0.0671) | ||
C2 | 0.9990 | 0.9961 | 1.9958 | 1.9909 | 1.1992 | 2.9967 | 0.8939 | |
(0.0475) | (0.0403) | (0.0415) | (0.0435) | (0.0481) | (0.0419) | (0.0618) | ||
C3 | 0.9991 | 0.9959 | 1.9962 | 1.9965 | 1.1915 | 2.9995 | 0.8955 | |
(0.0566) | (0.0578) | (0.0544) | (0.0571) | (0.0555) | (0.0530) | (0.0695) | ||
C4 | 0.9931 | 0.9908 | 1.9918 | 1.9912 | 1.1929 | 2.9928 | 0.8903 | |
(0.0557) | (0.0561) | (0.0530) | (0.0560) | (0.0533) | (0.0525) | (0.0683) | ||
900 | C1 | 0.9911 | 0.9935 | 1.9908 | 1.9994 | 1.1961 | 2.9954 | 0.8952 |
(0.0478) | (0.0416) | (0.0417) | (0.0457) | (0.0437) | (0.0423) | (0.0440) | ||
C2 | 0.9995 | 0.9905 | 1.9989 | 1.9978 | 1.1910 | 2.9917 | 0.8975 | |
(0.0375) | (0.0318) | (0.0313) | (0.0321) | (0.0347) | (0.0323) | (0.0413) | ||
C3 | 0.9957 | 0.9939 | 1.9936 | 1.9983 | 1.1928 | 2.9978 | 0.8961 | |
(0.0495) | (0.0440) | (0.0447) | (0.0475) | (0.0470) | (0.0450) | (0.0466) | ||
C4 | 0.9925 | 0.9936 | 1.9947 | 1.9950 | 1.1935 | 2.9954 | 0.8910 | |
(0.0488) | (0.0426) | (0.0431) | (0.0467) | (0.0455) | (0.0439) | (0.0457) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9870 | 0.9816 | 1.9819 | 1.9870 | 0.4862 | 0.8869 | 0.8891 |
(0.0737) | (0.0765) | (0.0707) | (0.0710) | (0.0788) | (0.0736) | (0.0805) | ||
C2 | 0.9877 | 0.9884 | 1.9809 | 1.9811 | 0.4805 | 0.8822 | 0.8815 | |
(0.0622) | (0.0651) | (0.0671) | (0.0625) | (0.0621) | (0.0661) | (0.0801) | ||
C3 | 0.9805 | 0.9801 | 1.9840 | 1.9854 | 0.4831 | 0.8838 | 0.9122 | |
(0.0761) | (0.0788) | (0.0729) | (0.0750) | (0.0797) | (0.0756) | (0.0825) | ||
C4 | 0.9893 | 0.9868 | 1.9880 | 1.9843 | 0.4822 | 0.8807 | 0.8810 | |
(0.0755) | (0.0776) | (0.0720) | (0.0735) | (0.0792) | (0.0747) | (0.0816) | ||
500 | C1 | 0.9993 | 0.9918 | 1.9913 | 1.9937 | 0.4920 | 0.8919 | 0.8912 |
(0.0429) | (0.0458) | (0.0444) | (0.0450) | (0.0475) | (0.0430) | (0.0643) | ||
C2 | 0.9932 | 0.9963 | 1.9953 | 1.9942 | 0.4989 | 0.8949 | 0.8986 | |
(0.0413) | (0.0447) | (0.0438) | (0.0427) | (0.0461) | (0.0419) | (0.0634) | ||
C3 | 0.9987 | 0.9952 | 1.9925 | 1.9911 | 0.4932 | 0.8976 | 0.8921 | |
(0.0517) | (0.0478) | (0.0587) | (0.0520) | (0.0530) | (0.0515) | (0.0675) | ||
C4 | 0.9933 | 0.9922 | 1.9917 | 1.9926 | 0.4985 | 0.8975 | 0.8939 | |
(0.0507) | (0.0468) | (0.0521) | (0.0519) | (0.0524) | (0.0443) | (0.0659) | ||
900 | C1 | 0.9908 | 0.9963 | 1.9941 | 1.9925 | 0.4973 | 0.8941 | 0.8905 |
(0.0273) | (0.0282) | (0.0224) | (0.0254) | (0.0285) | (0.0244) | (0.0440) | ||
C2 | 0.9975 | 0.9970 | 1.9931 | 1.9953 | 0.4986 | 0.8978 | 0.8953 | |
(0.0261) | (0.0274) | (0.0211) | (0.0240) | (0.0275) | (0.0237) | (0.0431) | ||
C3 | 0.9973 | 0.9994 | 1.9962 | 1.9979 | 0.4930 | 0.8931 | 0.8915 | |
(0.0336) | (0.0324) | (0.0343) | (0.0333) | (0.0319) | (0.0339) | (0.0479) | ||
C4 | 0.9952 | 0.9927 | 1.9958 | 1.9911 | 0.4984 | 0.8917 | 0.8963 | |
(0.0317) | (0.0305) | (0.0331) | (0.0319) | (0.0327) | (0.0322) | (0.0464) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9819 | 0.9841 | 1.9851 | 1.9891 | 0.4812 | 1.8871 | 0.8849 |
(0.0676) | (0.0612) | (0.0631) | (0.0611) | (0.0650) | (0.0638) | (0.0837) | ||
C2 | 0.9892 | 0.9810 | 1.9890 | 1.9846 | 0.4818 | 1.1820 | 0.8841 | |
(0.0529) | (0.0540) | (0.0523) | (0.0581) | (0.0513) | (0.0561) | (0.0820) | ||
C3 | 0.9845 | 0.9879 | 1.9825 | 1.9811 | 0.4878 | 1.1843 | 0.8884 | |
(0.0694) | (0.0640) | (0.0663) | (0.0637) | (0.0679) | (0.0671) | (0.0880) | ||
C4 | 0.9811 | 0.9866 | 1.9816 | 1.9883 | 0.4820 | 1.1846 | 0.8881 | |
(0.0684) | (0.0623) | (0.0649) | (0.0625) | (0.0666) | (0.0653) | (0.0858) | ||
500 | C1 | 0.9948 | 0.9923 | 1.9944 | 1.9953 | 0.4973 | 1.1993 | 0.8927 |
(0.0541) | (0.0543) | (0.0521) | (0.0572) | (0.0567) | (0.0555) | (0.0651) | ||
C2 | 0.9910 | 0.9917 | 1.9932 | 1.9918 | 0.4973 | 1.1978 | 0.8985 | |
(0.0415) | (0.0438) | (0.0493) | (0.0402) | (0.0411) | (0.0415) | (0.0628) | ||
C3 | 0.9903 | 0.9973 | 1.9913 | 1.9904 | 0.4965 | 1.1990 | 0.8958 | |
(0.0576) | (0.0573) | (0.0547) | (0.0592) | (0.0588) | (0.0578) | (0.0679) | ||
C4 | 0.9924 | 0.9906 | 1.9950 | 1.9981 | 0.4928 | 1.1950 | 0.8943 | |
(0.0559) | (0.0560) | (0.0536) | (0.0580) | (0.0581) | (0.0561) | (0.0670) | ||
900 | C1 | 0.9965 | 0.9998 | 1.9922 | 1.9905 | 0.4944 | 1.1972 | 0.8911 |
(0.0428) | (0.0441) | (0.0435) | (0.0423) | (0.0471) | (0.0429) | (0.0445) | ||
C2 | 0.9958 | 0.9915 | 1.9939 | 1.9919 | 0.4943 | 1.1931 | 0.8944 | |
(0.0331) | (0.0314) | (0.0362) | (0.0324) | (0.0335) | (0.0315) | (0.0432) | ||
C3 | 0.9950 | 0.9934 | 1.9969 | 1.9953 | 0.4922 | 1.1985 | 0.8907 | |
(0.0455) | (0.0463) | (0.0466) | (0.0441) | (0.0493) | (0.0450) | (0.0469) | ||
C4 | 0.9923 | 0.9988 | 1.9955 | 1.9967 | 0.4913 | 1.1931 | 0.8922 | |
(0.0440) | (0.0450) | (0.0451) | (0.0430) | (0.0480) | (0.0443) | (0.0460) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9813 | 0.9806 | 1.9858 | 1.9812 | 1.1871 | 0.4810 | 0.8891 |
(0.0657) | (0.0634) | (0.0665) | (0.0629) | (0.0664) | (0.0666) | (0.0874) | ||
C2 | 0.9860 | 0.9888 | 1.9852 | 1.9882 | 1.1879 | 0.4817 | 0.8897 | |
(0.0529) | (0.0590) | (0.0594) | (0.0514) | (0.0560) | (0.0576) | (0.0848) | ||
C3 | 0.9885 | 0.9851 | 1.9872 | 1.9808 | 1.1863 | 0.4877 | 0.8839 | |
(0.0674) | (0.0650) | (0.0688) | (0.0645) | (0.0679) | (0.0688) | (0.0892) | ||
C4 | 0.9807 | 0.9814 | 1.9890 | 1.9829 | 1.1863 | 0.4810 | 0.8832 | |
(0.0666) | (0.0640) | (0.0679) | (0.0637) | (0.0670) | (0.0680) | (0.0885) | ||
500 | C1 | 0.9964 | 0.9937 | 1.9965 | 1.9923 | 1.1952 | 0.4966 | 0.8970 |
(0.0546) | (0.0513) | (0.0521) | (0.0543) | (0.0565) | (0.0564) | (0.0675) | ||
C2 | 0.9955 | 0.9959 | 1.9918 | 1.9980 | 1.1912 | 0.4915 | 0.8937 | |
(0.0413) | (0.0485) | (0.0417) | (0.0444) | (0.0496) | (0.0436) | (0.0669) | ||
C3 | 0.9969 | 0.9980 | 1.9921 | 1.9941 | 1.1957 | 0.4937 | 0.8952 | |
(0.0560) | (0.0525) | (0.0541) | (0.0558) | (0.0580) | (0.0579) | (0.0691) | ||
C4 | 0.9991 | 0.9954 | 1.9984 | 1.9952 | 1.1908 | 0.4975 | 0.8999 | |
(0.0558) | (0.0526) | (0.0530) | (0.0550) | (0.0577) | (0.0575) | (0.0686) | ||
900 | C1 | 0.9950 | 0.9977 | 1.9931 | 1.9984 | 1.1983 | 0.4971 | 0.8958 |
(0.0453) | (0.0411) | (0.0415) | (0.0420) | (0.0410) | (0.0431) | (0.0440) | ||
C2 | 0.9950 | 0.9927 | 1.9965 | 1.9951 | 1.1953 | 0.4923 | 0.8938 | |
(0.0368) | (0.0324) | (0.0320) | (0.0305) | (0.0364) | (0.0339) | (0.0420) | ||
C3 | 0.9932 | 0.9931 | 1.9981 | 1.9985 | 1.1960 | 0.4972 | 0.8919 | |
(0.0475) | (0.0495) | (0.0466) | (0.0470) | (0.0461) | (0.0478) | (0.0485) | ||
C4 | 0.9925 | 0.9911 | 1.9959 | 1.9939 | 1.1917 | 0.4976 | 0.8936 | |
(0.0460) | (0.0428) | (0.0447) | (0.0455) | (0.0449) | (0.0460) | (0.0475) |
I | C | ˆβ[1]1 | ˆβ[1]2 | ˆβ[2]1 | ˆβ[2]2 | ˆν1 | ˆν2 | ˆθ |
---|---|---|---|---|---|---|---|---|
100 | C1 | 0.9831 | 0.9806 | 1.9848 | 1.9879 | 0.8882 | 0.8807 | 0.8893 |
(0.0652) | (0.0616) | (0.0620) | (0.0627) | (0.0631) | (0.0626) | (0.0875) | ||
C2 | 0.9880 | 0.9876 | 1.9830 | 1.9887 | 0.8827 | 0.9170 | 0.8841 | |
(0.0542) | (0.0596) | (0.0538) | (0.0560) | (0.0584) | (0.0525) | (0.0851) | ||
C3 | 0.9823 | 0.9820 | 1.9805 | 1.9888 | 0.8860 | 0.9124 | 0.8873 | |
(0.0675) | (0.0645) | (0.0650) | (0.0656) | (0.0661) | (0.0647) | (0.0898) | ||
C4 | 0.9821 | 0.9885 | 1.9875 | 1.9834 | 0.8844 | 0.8898 | 0.8801 | |
(0.0660) | (0.0629) | (0.0633) | (0.0640) | (0.0644) | (0.0637) | (0.0886) | ||
500 | C1 | 0.9914 | 0.9962 | 1.9982 | 1.9961 | 0.8985 | 0.8932 | 0.8946 |
(0.0531) | (0.0552) | (0.0562) | (0.0512) | (0.0513) | (0.0562) | (0.0688) | ||
C2 | 0.9956 | 0.9940 | 1.9922 | 1.9917 | 0.8927 | 0.8933 | 0.8936 | |
(0.0414) | (0.0495) | (0.0449) | (0.0436) | (0.0487) | (0.0427) | (0.0680) | ||
C3 | 0.9978 | 0.9980 | 1.9933 | 1.9988 | 0.8954 | 0.8912 | 0.8971 | |
(0.0551) | (0.0570) | (0.0574) | (0.0530) | (0.0528) | (0.0595) | (0.0697) | ||
C4 | 0.9910 | 0.9936 | 1.9950 | 1.9974 | 0.8901 | 0.8909 | 0.8908 | |
(0.0540) | (0.0563) | (0.0570) | (0.0524) | (0.0521) | (0.0580) | (0.0695) | ||
900 | C1 | 0.9940 | 0.9903 | 1.9952 | 1.9912 | 0.8924 | 0.8971 | 0.8969 |
(0.0461) | (0.0414) | (0.0431) | (0.0444) | (0.0476) | (0.0438) | (0.0446) | ||
C2 | 0.9902 | 0.9930 | 1.9974 | 1.9957 | 0.8942 | 0.8909 | 0.8923 | |
(0.0397) | (0.0364) | (0.0371) | (0.0352) | (0.0358) | (0.0393) | (0.0422) | ||
C3 | 0.9915 | 0.9959 | 1.9912 | 1.9904 | 0.8958 | 0.9081 | 0.8982 | |
(0.0489) | (0.0440) | (0.0450) | (0.0464) | (0.0492) | (0.0464) | (0.0471) | ||
C4 | 0.9971 | 0.9961 | 1.9935 | 1.9967 | 0.9053 | 0.8940 | 0.8911 | |
(0.0479) | (0.0429) | (0.0440) | (0.0458) | (0.0488) | (0.0455) | (0.0460) |
ˆν1 | ˆν2 | ˆθ | I | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|---|---|
1 | 1 | 0.3 | 100 | 400 | 360 | 440 | 425 |
1 | 1 | 0.3 | 500 | 375 | 325 | 410 | 400 |
1 | 1 | 0.3 | 900 | 320 | 290 | 370 | 360 |
0.5 | 0.9 | 0.3 | 100 | 380 | 340 | 410 | 400 |
0.5 | 0.9 | 0.3 | 500 | 350 | 310 | 375 | 370 |
0.5 | 0.9 | 0.3 | 900 | 300 | 275 | 335 | 325 |
1.2 | 3 | 0.3 | 100 | 425 | 400 | 450 | 440 |
1.2 | 3 | 0.3 | 500 | 400 | 360 | 425 | 415 |
1.2 | 3 | 0.3 | 900 | 350 | 315 | 390 | 375 |
0.5 | 1.2 | 0.3 | 100 | 390 | 375 | 420 | 410 |
0.5 | 1.2 | 0.3 | 500 | 350 | 340 | 385 | 380 |
0.5 | 1.2 | 0.3 | 900 | 315 | 300 | 350 | 340 |
1.2 | 0.5 | 0.3 | 100 | 395 | 370 | 415 | 405 |
1.2 | 0.5 | 0.3 | 500 | 360 | 330 | 385 | 380 |
1.2 | 0.5 | 0.3 | 900 | 320 | 300 | 355 | 345 |
0.9 | 0.9 | 0.3 | 100 | 385 | 350 | 430 | 420 |
0.9 | 0.9 | 0.3 | 500 | 370 | 320 | 400 | 405 |
0.9 | 0.9 | 0.3 | 900 | 325 | 295 | 375 | 370 |
ˆν1 | ˆν2 | ˆθ | I | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|---|---|
1 | 1 | 0.9 | 100 | 415 | 375 | 460 | 440 |
1 | 1 | 0.9 | 500 | 385 | 340 | 425 | 410 |
1 | 1 | 0.9 | 900 | 330 | 310 | 390 | 375 |
0.5 | 0.9 | 0.9 | 100 | 400 | 360 | 430 | 425 |
0.5 | 0.9 | 0.9 | 500 | 365 | 325 | 400 | 390 |
0.5 | 0.9 | 0.9 | 900 | 315 | 290 | 350 | 340 |
1.2 | 3 | 0.9 | 100 | 440 | 415 | 470 | 460 |
1.2 | 3 | 0.9 | 500 | 410 | 375 | 435 | 425 |
1.2 | 3 | 0.9 | 900 | 365 | 325 | 400 | 390 |
0.5 | 1.2 | 0.9 | 100 | 415 | 390 | 440 | 425 |
0.5 | 1.2 | 0.9 | 500 | 360 | 350 | 400 | 390 |
0.5 | 1.2 | 0.9 | 900 | 330 | 315 | 365 | 350 |
1.2 | 0.5 | 0.9 | 100 | 370 | 390 | 445 | 430 |
1.2 | 0.5 | 0.9 | 500 | 420 | 355 | 410 | 395 |
1.2 | 0.5 | 0.9 | 900 | 355 | 320 | 365 | 360 |
0.9 | 0.9 | 0.9 | 100 | 395 | 360 | 440 | 430 |
0.9 | 0.9 | 0.9 | 500 | 375 | 325 | 415 | 410 |
0.9 | 0.9 | 0.9 | 900 | 330 | 300 | 385 | 375 |
Series | Copulas | INTC | TR | BR | Age | INTA | ˆν1 |
---|---|---|---|---|---|---|---|
Y[1]i | AMH | 0.3522 | -0.3199 | 0.0303 | 0.0237 | 0.0038 | 0.3138 |
(0.4320) | (0.2550) | (0.0044) | (0.0121) | (0.0062) | (0.3761) | ||
Frank | 0.3542 | -0.3192 | 0.0304 | 0.0253 | 0.0004 | 0.3121 | |
(0.4317) | (0.2547) | (0.0041) | (0.0119) | (0.0061) | (0.3760) | ||
Clayton | 0.3627 | -0.3189 | 0.0329 | 0.0233 | 0.0039 | 0.3197 | |
(0.4340) | (0.2555) | (0.0049) | (0.0127) | (0.0068) | (0.3780) | ||
Gumbel | 0.3597 | -0.3145 | 0.0318 | 0.0264 | 0.0038 | 0.3133 | |
(0.4334) | (0.2559) | (0.0048) | (0.0130) | (0.0069) | (0.3772) | ||
Y[2]i | AMH | 0.2237 | -0.2051 | 0.0197 | 0.0172 | 0.0028 | 0.3015 |
(0.4165) | (0.2252) | (0.0055) | (0.0115) | (0.0059) | (0.3984) | ||
Frank | 0.2258 | -0.1962 | 0.0171 | 0.0150 | 0.0003 | 0.2966 | |
(0.4161) | (0.2251) | (0.0052) | (0.0111) | (0.0055) | (0.3979) | ||
Clayton | 0.2313 | -0.2061 | 0.0141 | 0.0129 | 0.0027 | 0.3113 | |
(0.4194) | (0.2278) | (0.0059) | (0.0120) | (0.0061) | (0.3987) | ||
Gumbel | 0.2299 | -0.1975 | 0.0152 | 0.0144 | 0.0029 | 0.2933 | |
(0.4170) | (0.2265) | (0.0058) | (0.0122) | (0.0064) | (0.3990) |
References
[1] E. Aly and N. Bouzar, Stationary solutions for integer-valued autoregressive processes, Int. J. Math. Math. Sci. 2005 (2005), no. 1, 1–18. 10.1155/IJMMS.2005.1Search in Google Scholar
[2] K. Best, Probability distributions of language entities, J. Quant. Linguist. 8 (2001), 1–11. 10.1076/jqul.8.1.1.4091Search in Google Scholar
[3] P. Boatwright, S. Borle and J. Kadane, A model of the joint distribution of purchase quantity and timing, J. Amer. Statist. Assoc. 98 (2003), 564–572. 10.1198/016214503000000404Search in Google Scholar
[4] S. Borle, P. Boatwright and J. Kadane, The timing of bid placement and extent of multiple bidding: An empirical investigation using ebay online auctions, Statist. Sci. 21 (2006), 194–205. 10.1214/088342306000000123Search in Google Scholar
[5] S. Borle, P. Boatwright, J. Kadane, J. Nunes and G. Shmueli, Effect of product assortment changes on consumer retention, Marketing Sci. 24 (2005), 616–622. 10.1287/mksc.1050.0121Search in Google Scholar
[6] S. Borle, U. Dholakia, S. Singh and R. Westbrook, The impact of survey participation on subsequent behavior: An empirical investigation, Marketing Sci. 26 (2007), 711–726. 10.1287/mksc.1070.0268Search in Google Scholar
[7] M. Bourguignon and K. Vasconcellos, Improved estimation for Poisson INAR(1) models, J. Stat. Comput. Simul. 85 (2015), no. 12, 2425–2441. 10.1080/00949655.2014.930862Search in Google Scholar
[8] F. Famoye and P. Consul, Bivariate generalized Poisson distribution with some applications, Metrika 42 (1995), 127–138. 10.1007/BF01894293Search in Google Scholar
[9] C. Genest and J. Neslehova, A primer on copulas for count data, Astin Bull. 37 (2007), 475–515. 10.2143/AST.37.2.2024077Search in Google Scholar
[10] A. Heinen and E. Rengifo, Multivariate modeling of time series count data: An autoregressive conditional Poisson model, CORE Discussion Paper No. 2003/25 (2003). 10.2139/ssrn.1117187Search in Google Scholar
[11] H. Joe, Multivariate Models and Dependence Concepts, Monogr. Statist. Appl. Probab. 73, Chapman and Hall, London, 1997. 10.1201/9780367803896Search in Google Scholar
[12] H. Joe, Asymptotic efficency of the two-stage estimation method for copula-based models, J. Multivariate Anal. 94 (2005), 401–419. 10.1016/j.jmva.2004.06.003Search in Google Scholar
[13] N. Johnson, S. Kotz and N. Balakrishnan, Discrete Multivariate Distributions, 3rd ed., Wiley, New York, 1997. Search in Google Scholar
[14] K. Kalyanam, S. Borle and P. Boatwright, Deconstructing each item’s category contribution, Marketing Sci. 26 (2007), 327–341. 10.1287/mksc.1070.0270Search in Google Scholar
[15] D. Karlis and X. Pedeli, Flexible bivariate inar(1) processes using copulas, Comm. Statist. Theory Methods 42 (2013), 723–740. 10.1080/03610926.2012.754466Search in Google Scholar
[16] S. Koopman, R. Lit and A. Lucas, Intraday stock price dependence using dynamic discrete copula distributions, Institute Discussion Paper, VU University and Tinbergen, 2015. 10.2139/ssrn.2580840Search in Google Scholar
[17] D. Lord, S. Geedipally and S. Guikema, Extension of the application of Conway–Maxwell–Poisson models: Analysing traffic crash data exhibiting underdispersion, Risk Anal. 30 (2010), 1268–1276. 10.1111/j.1539-6924.2010.01417.xSearch in Google Scholar PubMed
[18] D. Lord, S. Guikema and S. Geedipally, Application of Conway–Maxwell–Poisson for analyzing motor vehicle crashes, Accident Anal. Prevention 40 (2008), 1123–1134. 10.1016/j.aap.2007.12.003Search in Google Scholar PubMed
[19] N. Mamode Khan and V. Jowaheer, Comparing joint gql estimation and gmm adaptive estimation in com-Poisson longitudinal regression model, Comm. Statist. Simulation Comput. 42 (2013), no. 4, 755–770. 10.1080/03610918.2012.655831Search in Google Scholar
[20] N. Mamode Khan, Y. Sunecher and V. Jowaheer, Analyzing multivariate vross-sectional poisson count using a quasi-likelihood approach: The case of trivariate Poisson, Intelligent Mathematics II: Applied Mathematics and Approximation Theory, Adv. Intell. Syst. Comput. 441, Springer, Cham (2016), 407–421. 10.1007/978-3-319-30322-2_27Search in Google Scholar
[21] N. Mamode Khan, Y. Sunecher and V. Jowaheer, Modelling a non-stationary BINAR(1) Poisson process, J. Stat. Comput. Simul. 86 (2016), 3106–3126. 10.1080/00949655.2016.1150482Search in Google Scholar
[22] J. Maritz, Note on a certain family of discrete distibution, Biometrika 39 (1952), 196–198. 10.1093/biomet/39.1-2.196Search in Google Scholar
[23] E. McKenzie, Some arma models for dependent sequences of Poisson counts, Adv. Appl. Probab. 20 (1988), 822–835. 10.2307/1427362Search in Google Scholar
[24] T. Minka, G. Shmueli, J. Kadane, S. Borle and P. Boatwright, Computing with the com-Poisson dustribution, Technical Report, Carnegie Mellon University, 2003. Search in Google Scholar
[25] A. M’Kendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc. 44 (1926), 98–130. 10.1017/S0013091500034428Search in Google Scholar
[26] R. Nelsen, An Introduction to Copulas, 2nd ed., Springer, New York, 2006. Search in Google Scholar
[27] A. Nikoloulopoulos, Copula-based models for multivariate discrete response data, Copulae in Mathematical and Quantitative Finance (Cracow 2011), Springer, Berlin (2013), 231–249. 10.1007/978-3-642-35407-6_11Search in Google Scholar
[28] A. Nikoloulopoulos and D. Karlis, Modeling multivariate count data using copulas, Comm. Statist. Simulation Comput. 39 (2009), no. 1, 172–187. 10.1080/03610910903391262Search in Google Scholar
[29] A. Nikoloulopoulos and D. Karlis, Regression in a copula model for bivariate count data, J. Appl. Stat. 37 (2010), 1555–1568. 10.1080/02664760903093591Search in Google Scholar
[30] X. Pedeli and D. Karlis, Bivariate inar(1) models, Technical Report, Athens University of Economics, 2009. Search in Google Scholar
[31] X. Pedeli and D. Karlis, A bivariate inar(1) process with application, Stat. Model. 11 (2011), 325–349. 10.1177/1471082X1001100403Search in Google Scholar
[32] X. Pedeli and D. Karlis, Some properties of multivariate inar(1) processes, Comput. Statist. Data Anal. 67 (2013), 213–225. 10.1016/j.csda.2013.05.019Search in Google Scholar
[33] W. Rumjaun and N. Mamode Khan, Constructing a bivariate com-Poisson model using copulas, preprint (2016), http://dupuy.perso.math.cnrs.fr/IWSM2016/proceedingsVol2.pdf. 10.1515/mcma-2017-0103Search in Google Scholar
[34] K. Sellers, D. Morris and N. Balakrishnan, Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties and inference, J. Multivariate Anal. 150 (2016), 152–168. 10.1016/j.jmva.2016.04.007Search in Google Scholar
[35] G. Shmueli, T. Minka, J. Borle and P. Boatwright, A useful distribution for fitting discrete data: Revival of the Conway–Maxwell–Poisson distribution, J. R. Stat. Soc. Ser. C. Appl. Stat. 54 (2005), no. 1, 127–142. 10.1111/j.1467-9876.2005.00474.xSearch in Google Scholar
[36] M. Silva and V. Oliveira, Difference equations for the higher order moments and cumulants of the inar(1) model, J. Time Series Anal. 25 (2004), 317–333. 10.1111/j.1467-9892.2005.00388.xSearch in Google Scholar
[37] S. Singh, S. Borle and D. Jain, A generalized framework for estimating customer lifetime value when customer lefetimes are not observed, Quant. Marketing Econ. 7 (2009), 181–205. 10.1007/s11129-009-9065-0Search in Google Scholar
[38] A. Sklar, Fonctions de repartitions a n dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris 8 (1959), 229–231. Search in Google Scholar
[39] F. Steutel and K. Van Harn, Discrete analogues of self-decomposability and statibility, Ann. Probab. 7 (1979), 3893–899. 10.1214/aop/1176994950Search in Google Scholar
[40] Y. Sunecher, N. Mamode Khan and V. Jowaheer, Estimating the parameters of a BINMA Poisson model for a non-stationary bivariate time series, Comm. Statist. Simulation Comput. (2016), 10.1080/03610918.2016.1212068. 10.1080/03610918.2016.1212068Search in Google Scholar
[41] B. Sutradhar, An overview on regression models for discrete longitudinal responses, Statist. Sci. 18 (2003), no. 3, 377–393. 10.1214/ss/1076102426Search in Google Scholar
[42] B. Sutradhar, V. Jowaheer and P. Rao, Remarks on asymptotic efficient estimation for regression effects in stationary and non-stationary models for panel count data, Braz. J. Probab. Stat. 28 (2014), no. 2, 241–254. 10.1214/12-BJPS204Search in Google Scholar
[43] H. Teicher, On the multivariate Poisson distribution, Scand. Actuar. J. 37 (1954), 1–9. 10.1080/03461238.1954.10414190Search in Google Scholar
[44] P. Thall and S. Vail, Some covariance models for longitudinal count data with overdispersion, Biometrika 46 (1990), 657–71. 10.2307/2532086Search in Google Scholar
[45] P. Trivedi and D. Zimmer, Copula Modeling: An Introduction for Practitioners. Vol. 1, Now Publishers, Delft, 2007. 10.1561/0800000005Search in Google Scholar
[46] C. Weiß, Thinning operations for modelling time series of counts-a survey, AStA Advances in Statistical Analysis 92 (2008), 10.1007/s10182-008-0072-3. 10.1007/s10182-008-0072-3Search in Google Scholar
[47] G. Wimmer, R. Kohler, R. Grotjahn and G. Altmann, Toward a theory of word length distribution, J. Quant. Linguist. 1 (1994), 98–106. 10.1080/09296179408590003Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston