Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 22, 2020

A Bayesian inference for the penalized spline joint models of longitudinal and time-to-event data: A prior sensitivity analysis

  • Huong Thi Thu Pham EMAIL logo , Hoa Pham and Darfiana Nur

Abstract

Bayesian approaches have been used in the literature to estimate the parameters for joint models of longitudinal and time-to-event data. The main aim of this paper is to analyze the impact of prior distributions on estimating parameters in a proposed fully Bayesian analysis setting for the penalized spline joint models. To achieve this aim, the joint posterior distribution of parameters in survival and longitudinal submodels is presented. The Markov chain Monte Carlo (MCMC) algorithm is then proposed, which consists of the Gibbs sampler (GS) and Metropolis Hastings (MH) algorithms to sample for the target conditional posterior distributions. The prior sensitivity analysis for the baseline hazard rate and association parameters is performed through simulation studies and a case study.

A The conditional posterior distribution for all parameters and the conjugate prior distribution of the variance matrix 𝐆

A.1

The conditional posterior distribution for parameters in the baseline hazard function:

p(𝜽h0|𝜽(-𝜽h0),𝐛,T,δ,𝐲)i=1n[h0(Ti)exp{𝜸T𝐰i+αmi(t)}]δi
×i=1nexp(-0Tih0(s)exp{𝜸T𝐰i+αmi(s)ds})
(A.1)×|𝚺𝜽h0|-12exp{-12(𝜽h0-μ𝜽h0)T𝚺𝜽h0-1(𝜽h0-μ𝜽h0)},

where the notation 𝜽(-θi) means all parameters in the joint model except for θi.

A.2

The conditional posterior distribution of the regression coefficients in the survival submodel:

p(𝜸,α|𝜽(-𝜸,-α),𝐛,T,δ,𝐲)i=1nexp{𝜸T𝐰i+αmi(t)}δi×exp(-0Tiexp{𝜸T𝐰i+αmi(s)ds})
×|𝚺𝜸|-12exp{-12(𝜸-μ𝜸)T𝚺λ-1(𝜸-μ𝜸)}
(A.2)×(2πσα)-12exp{-12σα2(α-μα)2}.

A.3

The conditional posterior distribution of the regression coefficients 𝜷 in the linear mixed effects submodel:

p(𝜷|𝜽(-𝜷),𝐛,T,δ,𝐲)i=1nexp{𝜸T𝐰i+αmi(t)}δi×exp(-0Tiexp{𝜸T𝐰i+αmi(s)ds})
×i=1nj=1niexp{-(yi(tij)-𝐗iT(tij)𝜷-𝐗iT(tij)𝐯i-𝐙iT(tij)𝐮i)22σε2}
(A.3)×|𝚺𝜷|-12exp{-12(𝜷-μ𝜷)T𝚺𝜷-1(𝜷-μ𝜷)}.

A.4

The conditional posterior distribution of measurement error τ=1/σε2: The prior distribution of σε2 is an inverse gamma distribution with a scale of a0 and a shape of b0 as in (3.2), which is the conjugate prior distribution. The conditional posterior distribution of

τ=1σε2

is distributed as 𝒢(α*,β*), where

(A.4){α*=a0+N2,β*=b0+12i=1nj=1ni(yi(tij)-𝐗iT(tij)𝜷-𝐗iT(tij)𝐯i-𝐙iT(tij)𝐮i)2.

A.5

The conditional posterior distribution for random effects 𝐛i in the linear mixed effects submodel:

p(𝐛i|𝜽(-𝐛i),T,δ,𝐲)exp{𝜸T𝐰i+αmi(t)}δiexp(-0Tiexp{𝜸T𝐰i+αmi(s)ds})
×j=1ni1(2πσε2)12exp{-(yi(tij)-𝐗iT(tij)𝜷-[𝐗iT(tij)𝐙iT(tij)]𝐛i)22σε2}
(A.5)×|𝐆|-12exp{-12(𝐛i)T𝐆(𝐛i)}.

A.6

There are two options for choosing the conjugate prior distribution of the variance matrix 𝐆. These are when 𝐆 is a diagonal matrix and when 𝐆 is a non-diagonal matrix. Therefore, we propose two conditional posterior distributions for the matrix 𝐆.

In the case when 𝐆 is a non-diagonal matrix, the conjugate prior distribution for 𝐆 is a Wishart distribution as in (3.4). The conditional posterior distribution for 𝐆-1 has the standard form

(A.6)𝐆-1|𝜽(-𝐆-1),𝐛,T,δ,𝐲𝒲[n+r,(𝐑+i=1n(bibiT))-1]q.

In the second case when 𝐆 is a diagonal matrix with elements σk2, k=1,,q, the conjugate prior distribution for 𝐆 has the form

p(σ12,,σq2)=k=1q𝒢(ak,bk).

Set τk=1/σk2 for k=1,,q. The conditional posterior distribution for 𝐆-1 has the standard form

(A.7)τ1,,τq|𝜽(-τ1,,-τq),T,δ,𝐲k=1q𝒢(ak*,bk*),

where

ak*=ak+n2,
bk*=bk+12i=1nbiTbi.

B MCMC traces and posterior distribution plots for the parameters of the flat prior on λ and α

MCMC traces and posterior distribution plots for the parameters of the flat prior on λ and α (see Figures 13).

Figure 1 MCMC traces (left) and the marginal posterior
distribution (right) plots for the parameters λ, γ
and α. The thick lines indicate the positions of the true values.
Figure 1

MCMC traces (left) and the marginal posterior distribution (right) plots for the parameters λ, γ and α. The thick lines indicate the positions of the true values.

Figure 2 MCMC traces (left) and the marginal posterior
distribution (right) plots for the parameters β0{\beta_{0}}, β1{\beta_{1}}
and σ. The thick lines indicate the positions of the true values.
Figure 2

MCMC traces (left) and the marginal posterior distribution (right) plots for the parameters β0, β1 and σ. The thick lines indicate the positions of the true values.

Figure 3 MCMC traces (left) and the marginal posterior distribution
(right) plots for the parameters D11{D_{11}}, D12{D_{12}} and D22{D_{22}}.
The thick lines indicate the positions of the true values.
Figure 3

MCMC traces (left) and the marginal posterior distribution (right) plots for the parameters D11, D12 and D22. The thick lines indicate the positions of the true values.

C The potential rate reduction factor plots of Gelman and Rubin diagnostic and the autocorrelation function (ACF) plots for the parameters of the flat prior on λ and α

The potential rate reduction factor plots of Gelman and Rubin diagnostic and the autocorrelation function (ACF) plots for the parameters of the flat prior on λ and α (see Figures 4 and 5).

Figure 4 The potential rate reduction factor plots of Gelman
and Rubin diagnostic for all parameters in (5.1) and (5.2).
Figure 4

The potential rate reduction factor plots of Gelman and Rubin diagnostic for all parameters in (5.1) and (5.2).

Figure 5 ACF plots for all parameters in (5.1) and (5.2).
Figure 5

ACF plots for all parameters in (5.1) and (5.2).

References

[1] P. K. Andersen, O. Borgan, R. D. Gill and N. Keiding, Statistical Models Based on Counting Processes, Springer, New York, 1993. 10.1007/978-1-4612-4348-9Search in Google Scholar

[2] P. C. Austin, Generating survival times to simulate Cox proportional hazards models with time-varying covariates, Stat. Med. 31 (2012), no. 29, 3946–3958. 10.1002/sim.5452Search in Google Scholar

[3] R. Bender, T. Augustin and M. Blettner, Generating survival times to simulate Cox proportional hazards models, Stat. Med. 24 (2005), no. 11, 1713–1723. 10.1002/sim.2059Search in Google Scholar

[4] S. P. Brooks and A. Gelman, General methods for monitoring convergence of iterative simulations, J. Comput. Graph. Statist. 7 (1998), no. 4, 434–455. 10.1080/10618600.1998.10474787Search in Google Scholar

[5] E. R. Brown, J. G. Ibrahim and V. DeGruttola, A flexible B-spline model for multiple longitudinal biomarkers and survival, Biometrics 61 (2005), no. 1, 64–73. 10.1111/j.0006-341X.2005.030929.xSearch in Google Scholar

[6] D. Cox and D. Oakes, Analysis of Survival Data, Chapman & Hall, London, 1984. Search in Google Scholar

[7] D. R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B. Stat. Methodol. 34 (1972), no. 2, 187–220. 10.1007/978-1-4612-4380-9_37Search in Google Scholar

[8] D. R. Cox, Partial likelihood, Biometrika 62 (1975), no. 2, 269–276. 10.1093/biomet/62.2.269Search in Google Scholar

[9] D. R. Cox and D. V. Hinkley, Theoretical Statistics, Chapman & Hall, New York, 1979. 10.1201/b14832Search in Google Scholar

[10] M. J. Crowther, K. R. Abrams and P. C. Lambert, Joint modeling of longitudinal and survival data, Stata J. 13 (2013), no. 1, 165–184. 10.1177/1536867X1301300112Search in Google Scholar

[11] M. J. Crowther and P. C. Lambert, Simulating biologically plausible complex survival data, Stat. Med. 32 (2013), no. 23, 4118–4134. 10.1002/sim.5823Search in Google Scholar

[12] C. L. Faucett and D. C. Thomas, Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach, Stat. Med. 15 (1996), no. 15, 1663–1685. 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1Search in Google Scholar

[13] A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Bayesian Data Analysis, Chapman & Hall, London, 1995. 10.1201/9780429258411Search in Google Scholar

[14] A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, New York, 2007. 10.1017/CBO9780511790942Search in Google Scholar

[15] A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences, Stat. Sci. 7 (1992), no. 4, 457–472. 10.1214/ss/1177011136Search in Google Scholar

[16] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. (1984), no. 6, 721–741. 10.1016/B978-0-08-051581-6.50057-XSearch in Google Scholar

[17] J. Geweke, Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, Staff Report 148, Federal Reserve Bank of Minneapolis, 1991. 10.21034/sr.148Search in Google Scholar

[18] A. Gould, M. E. Boye, M. J. Crowther, J. G. Ibrahim, G. Quartey, S. Micallef and F. Y. Bois, Joint modeling of survival and longitudinal non-survival data: Current methods and issues. Report of the DIA Bayesian joint modeling working group, Stat. Med. 34 (2014), no. 14, 2181–2195. 10.1002/sim.6502Search in Google Scholar PubMed PubMed Central

[19] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970), no. 1, 97–109. 10.1093/biomet/57.1.97Search in Google Scholar

[20] P. Huong, D. Nur and A. Branford, Penalized spline joint models for longitudinal and time-to-event data, Comm. Statist. Theory Methods 46 (2017), no. 20, 10294–10314. 10.1080/03610926.2016.1235195Search in Google Scholar

[21] J. G. Ibrahim, M. Chen and D. Sinha, Bayesian Survival Analysis, Springer, New York, 2005. 10.1002/0470011815.b2a11006Search in Google Scholar

[22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953), no. 6, 1087–1092. 10.2172/4390578Search in Google Scholar

[23] D. Rizopoulos, Joint Models for Longitudinal and Time-to-Event Data with Applications in R, Chapman & Hall, Boca Raton, 2012. 10.1201/b12208Search in Google Scholar

[24] D. Rizopoulos, The R package jmbayes for fitting joint models for longitudinal and time-to-event data using MCMC, J. Stat. Softw. 72 (2014), no. 7, 1–45. 10.18637/jss.v072.i07Search in Google Scholar

[25] C. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, New York, 2004. 10.1007/978-1-4757-4145-2Search in Google Scholar

[26] G. O. Roberts, A. Gelman and W. R. Gilks, Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab. 7 (1997), no. 1, 110–120. 10.1214/aoap/1034625254Search in Google Scholar

[27] M. J. Sweeting and S. G. Thompson, Joint modelling of longitudinal and time to event data with application to predicting abdominal aortic aneurysm growth and rupture, Biometrical J. 53 (2011), no. 5, 750–763. 10.1002/bimj.201100052Search in Google Scholar PubMed PubMed Central

[28] A. A. Tsiatis and M. Davidian, Joint modeling of longitudinal and time-to-event data: An overview, Statist. Sinica 14 (2004), no. 3, 809–834. Search in Google Scholar

[29] G. Verbeke and G. Molenberghs, Linear Mixed Models for Longitudinal Data, Springer, New York, 2000. 10.1007/978-1-4419-0300-6Search in Google Scholar

[30] J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Science & Business Media, New York, 2013. 10.1007/978-1-4419-0925-1Search in Google Scholar

[31] Y. Wang and J. M. G. Taylor, Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome, J. Amer. Statist. Assoc. 96 (2001), no. 455, 895–905. 10.1198/016214501753208591Search in Google Scholar

Received: 2019-12-07
Accepted: 2020-02-03
Published Online: 2020-02-22
Published in Print: 2020-03-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2020-2058/html
Scroll to top button