Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 15, 2020

A neural network assisted Metropolis adjusted Langevin algorithm

  • Christian Müller EMAIL logo , Holger Diedam , Thomas Mrziglod and Andreas Schuppert

Abstract

In this paper, we derive a Markov chain Monte Carlo (MCMC) algorithm supported by a neural network. In particular, we use the neural network to substitute derivative calculations made during a Metropolis adjusted Langevin algorithm (MALA) step with inexpensive neural network evaluations. Using a complex, high-dimensional blood coagulation model and a set of measurements, we define a likelihood function on which we evaluate the new MCMC algorithm. The blood coagulation model is a dynamic model, where derivative calculations are expensive and hence limit the efficiency of derivative-based MCMC algorithms. The MALA adaptation greatly reduces the time per iteration, while only slightly affecting the sample quality. We also test the new algorithm on a 2-dimensional example with a non-convex shape, a case where the MALA algorithm has a clear advantage over other state of the art MCMC algorithms. To assess the impact of the new algorithm, we compare the results to previously generated results of the MALA and the random walk Metropolis Hastings (RWMH).

MSC 2010: 65C05

A Appendix: A blood coagulation model

What follows is the mathematical formulation of the ODE system of the blood coagulation model we use in Section 4.1. For a detailed, biological description of the parameters, we refer to [6] and the added supplementary materials.

dx0dt=u81x2+u83x26-u82x0-p19x0x3,
dx1dt=u81x2-p20x1(x27+x28)-u82x0x1-u84x1x26-u85x1x29,
dx2dt=u82x0x1-u81x2,
dx3dt=u83x26+p20x1(x27+x28)-p19x0x3+u84x1x26+u85x1x29,
dx4dt=p21x31+u78p16x30-p22x4x26-u78x4x90,
dx5dt=u87x34+u77p15x33-u88x5x26-u77x5x90-p38x5x63p39+x5,
dx6dt=p31x47+u73p13x7-u90x6(x27+x28)-u73x6x90-p32x6x46,
dx7dt=u73x6x90-u90x7(x27+x28)-u73p13x7-p32x7x46,
dx8dt=u204x121+u76p14x37-x8(u91(x27+x28)+p25x29+p25x48)-u76x8x90-p49x8x120,
dx9dt=u74u75x44-x9(u99(x27+x28)+u98x29+p28x48)-u74x9x90,
dx10dt=u100x49+u102x50-u101x10x27-p35x10x32,
dx11dt=u212u213x83-u104x11x27-u107x11x26-u106x11x29-u105x11x35-p36x11x48-u110x11x58-u126x11x63-u153x11x84-p45x11x70-u179x11x72-u212x11x124-p45u201x11x115,
dx12dt=-u117x12(x29+x480.07)u118+x12,
dx13dt=-u124x13x63,
dx14dt=u79p17x15-u79x14x90-p37x14(x29+x48)u121+x14-u119x14x89u120+x14,
dx15dt=u79x14x90-u79p17x15-p37x15(x29+x48)u121+x15-u119x15x89u120+x15,
dx16dt=-u125x16x63-u177x16x27-p44x16x29-p44x16x48-u178x16x72,
dx17dt=-u127x17x63-u165x17x72,
dx18dt=-u128x18x63,
dx19dt=u140x118+x9(u99(x27+x28)+u98x29+p28x48)+u74u75x45-u74x19x90-u133u209x19x73,
dx20dt=u108u116x58+u108u116x59+u109u115x60+u111u112x61+u113u114x78-p0u114x20-u108x20x27-u108x20x28-u109x20x46-u111x20x51,
dx21dt=u142x79+u144x80+u146x82-p0u147x21+u147u148x81-u141x21x29-u143x21x48-u145x21x70,
dx22dt=u150x84+u150x85+u152x86+u155x88+u156u157x87-p0u156x22-u149x22x27-u149x22x28-u151x22x46-u154x22x51,
dx23dt=u137x71+u137x116-u129x23x70-u129x23x115,
dx24dt=u131x73-u130x24x72,
dx25dt=u136x70+u136x115+p45x11x70+u172x70x94+p45u201x11x115+u172u201x94x115-p40x25x29-p40x25x48,
dx26dt=p21x312.0+p24x322.0+u87x34+u89x34+u87x91+u89x91+p19x0x3-u83x26-p22x4x26-u88x5x26-p22x26x30-u86x26x27-u86x26x28-u88x26x33-u107x11x26-u103x26x49,
dx27dt=p24x32+p29x46+u100x49+u150x84+u78p16x28+u108u116x58+u166u167x103-u86x26x27-u101x10x27-u104x11x27-u108x20x27-p30x27x45-u78x27x90-u149x22x27-u177x16x27-u162x27x93-u166x27x94-u215x27x83,
dx28dt=p24x32+u94x41+u150x85+u108u116x59+u78x27x90+u122x30x36u123+x30-u86x26x28-u108x20x28-p30x28x45-u78p16x28-u149x22x28-u215x28x83,
dx29dt=u136x70+u142x79+u90x6(x27+x28)+u90x7(x27+x28)+u168u169x105+u173u174x108-u106x11x29+p34x46x48-p40x25x29-u141x21x29-p44x16x29-p43x29x92-u163x29x93-u168x29x94-u173x29x95-u214x29x83,
dx30dt=p21x31+u93x41+u97x41+u78x4x90-u78p16x30-p22x26x30-p27x30x40-u122x30x36u123+x30,
dx31dt=p21x31(-2.0)+p22x4x26+p22x26x30-p23x31,
dx32dt=p23x31-p24x322.0+u102x50+u86x26x27+u86x26x28-p35x10x32,
dx33dt=u87x91+u77x5x90-u77p15x33-u88x26x33-p38x33x64p39+x33,
dx34dt=u88x5x26-u87x34-u89x34,
dx35dt=u89x34+u77p15x36+p38x5x63p39+x5-u105x11x35-u77x35x90-u217x35x83,
dx36dt=u92x40+u97x40+u97x41+u89x91+u77x35x90+p38x33x64p39+x33-u77p15x36-p26x36x39-u217x36x83,
dx37dt=-x37(u91(x27+x28)+p25x29+p25x48)-u76p14x37+u76x8x90,
dx38dt=u139x119+u206x122+x8(u91(x27+x28)+p25x29+p25x48)+u76p14x39-u76x38x90-u205x38x120-u132u209x38x73,
dx39dt=u92x40+u139x74+x37(u91(x27+x28)+p25x29+p25x48)+u95x42x43+u76x38x90-u96x39-u76p14x39-p26x36x39-u132x39x73,
dx40dt=u93x41+u94x41+p26x36x39-u92x40-u97x40-p27x30x40,
dx41dt=p27x30x40-u93x41-u94x41-u97x41,
dx42dt=u96x39+u97x40+u97x41-u95x42x43,
dx43dt=u96x39+u97x40+u97x41-u95x42x43,
dx44dt=u74x9x90-x44(u99(x27+x28)+u98x29+p28x48)-u74u75x44,
dx45dt=p29x46+u140x75+x44(u99(x27+x28)+u98x29+p28x48)+u74x19x90+u218x46x83-u74u75x45-p30x27x45-p30x28x45-u133x45x73,
dx46dt=p31x47+p33x47+u152x86+u109u115x60+p30x27x45+p30x28x45-p29x46-p32x6x46-p32x7x46-u109x20x46-u151x22x46-u218x46x83,
dx47dt=p32x6x46+p32x7x46-p31x47-p33x47,
dx48dt=p33x47+u144x80+u136x115+u168u169x104+u173u174x107-p36x11x48-p34x46x48-p40x25x48-u143x21x48-p44x16x48-p43x48x92-u163x48x93-u168x48x94-u173x48x95-u214x48x83,
dx49dt=+u101x10x27-u100x49-u103x26x49,
dx50dt=+p35x10x32+u103x26x49-u102x50,
dx51dt=u155x88+u111u112x61+u104x11x27+u215x27x83+u215x28x83+u218x46x83-u111x20x51-u154x22x51,
dx52dt=0,
dx53dt=p36x11x48+u214x48x83+p45u201x11x115,
dx54dt=u105x11x35+u217x35x83+u217x36x83,
dx55dt=0,
dx56dt=u106x11x29+p45x11x70+u214x29x83,
dx57dt=u107x11x26,
dx58dt=u78p16x59+u108x20x27-u108u116x58-u110x11x58-u78x58x90,
dx59dt=u108x20x28+u78x58x90-u78p16x59-u108u116x59,
dx60dt=u109x20x46-u109u115x60,
dx61dt=u110x11x58+u111x20x51-u111u112x61,
dx62dt=u117x12(x29+x480.07)u118+x12,
dx63dt=u80p18x64+p37x14(x29+x48)u121+x14+u119x14x89u120+x14-u124x13x63-u126x11x63-u125x16x63-u127x17x63-u128x18x63-u80x63x90-u216x63x83,
dx64dt=u80x63x90+p37x15(x29+x48)u121+x15+u119x15x89u120+x15-u80p18x64-u216x64x83,
dx65dt=u124x13x63,
dx66dt=u125x16x63,
dx67dt=u126x11x63+u216x63x83+u216x64x83,
dx68dt=u127x17x63,
dx69dt=u128x18x63,
dx70dt=u137x71+u138x71+u146x82+p40x25x29-u136x70-u129x23x70-u145x21x70-p45x11x70-u172x70x94,
dx71dt=u129x23x70-u137x71-u138x71,
dx72dt=u131x73+u138x71+u170u171x106+u175u176x109+u138u208x116-u130x24x72-u165x17x72-u179x11x72-u178x16x72-u164x72x93-u170x72x94-u175x72x95,
dx73dt=+u134x75+u135x74+u139x74+u140x75+u134x118+u135x119+u139x119+u140x118+u130x24x72-u131x73-u132x39x73-u133x45x73-u133u209x19x73-u132u209x38x73,
dx74dt=u132x39x73-u135x74-u139x74,
dx75dt=u133x45x73-u134x75-u140x75,
dx76dt=u134x75+u134x118,
dx77dt=u135x74+u135x119,
dx78dt=p0u114x20-u113u114x78,
dx79dt=u141x21x29-u142x79,
dx80dt=u143x21x48-u144x80,
dx81dt=p0u147x21-u147u148x81,
dx82dt=u145x21x70-u146x82,
dx83dt=u212x11x124-u212u213x83-u215x27x83-u214x29x83-u215x28x83-u217x35x83-u217x36x83-u214x48x83-u218x46x83-u216x63x83-u216x64x83,
dx84dt=u78p16x85+u149x22x27-u150x84-u78x84x90-u153x11x84,
dx85dt=u149x22x28+u78x84x90-u150x85-u78p16x85,
dx86dt=u151x22x46-u152x86,
dx87dt=p0u156x22-u156u157x87,
dx88dt=u154x22x51+u153x11x84-u155x88,
dx89dt=0,
dx90dt=u96x39+u134x75+u135x74+u90x7(x27+x28)+u73p13x7+u79p17x15+u78p16x28+u76p14x37+u77p15x33+u78p16x30+u76p14x39+u74u75x44+u77p15x36+u74u75x45+u78p16x59+u80p18x64+u78p16x85+p22x26x30+u86x26x28+p32x7x46+p27x30x40+p26x36x39+p30x28x45+u215x28x83+u217x36x83+u216x64x83-p21x31-p24x32-u92x40-u93x41-u94x41-u97x41-u73x6x90-u74x9x90-u77x5x90-u76x8x90-u78x4x90-u74x19x90-u79x14x90-u95x42x43-u78x27x90-u77x35x90-u76x38x90-u78x58x90-u80x63x90-u78x84x90,
dx91dt=u88x26x33-u87x91-u89x91,
dx92dt=-p43x29x92-p43x48x92,
dx93dt=-u162x27x93-u163x29x93-u163x48x93-u164x72x93,
dx94dt=u166u167x103+u168u169x104+u168u169x105+u170u171x106-u166x27x94-u168x29x94-u168x48x94-u170x72x94-u172x70x94-u172u201x94x115,
dx95dt=u173u174x107+u173u174x108+u175u176x109-u173x29x95-u173x48x95-u175x72x95,
dx96dt=u179x11x72,
dx97dt=p43x48x92,
dx98dt=p43x29x92,
dx99dt=u162x27x93,
dx100dt=u163x48x93,
dx101dt=u163x29x93,
dx102dt=u164x72x93,
dx103dt=u166x27x94-u166u167x103,
dx104dt=u168x48x94+u172u201x94x115-u168u169x104,
dx105dt=u168x29x94+u172x70x94-u168u169x105,
dx106dt=u170x72x94-u170u171x106,
dx107dt=u173x48x95-u173u174x107,
dx108dt=u173x29x95-u173u174x108,
dx109dt=u175x72x95-u175u176x109,
dx110dt=u177x16x27,
dx111dt=p44x16x48,
dx112dt=p44x16x29,
dx113dt=u178x16x72,
dx114dt=u165x17x72,
dx115dt=+u137x116+u138u208x116+p40x25x48-u136x115-u129x23x115-p45u201x11x115-u172u201x94x115,
dx116dt=u129x23x115-u137x116-u138u208x116,
dx117dt=0,
dx118dt=u133u209x19x73-u134x118-u140x118,
dx119dt=u132u209x38x73-u135x119-u139x119,
dx120dt=u204x121+u206x122-p49x8x120-u205x38x120,
dx121dt=p49x8x120-u204x121-u207x121(x29+x48),
dx122dt=u207x121(x29+x48)+u205x38x120-u206x122,
dx123dt=p0u219x124-u219u220x123,
dx124dt=+u212u213x83+u219u220x123+u215x27x83+u214x29x83+u215x28x83+u217x35x83+u217x36x83+u214x48x83+u218x46x83+u216x63x83+u216x64x83-p0u219x124-u212x11x124.

The initial values of the system are given as IV dependent on the constant parameters u and variable parameters p.

IV0=p0p1,IV1=p0p2p42,IV2=p0u0,
IV3=p0p3p42,IV4=p0p4p42,IV5=p0p5p42,
IV6=p0p6p42,IV7=p0u1,IV8=p0p7,
IV9=p0p8,IV10=p0p9,IV11=p0p10,
IV12=p0u2,IV13=p0u3,IV14=p0u4,
IV15=p0u5,IV16=p0p11,IV17=p0u6,
IV18=p0u7,IV19=p0(u8+p8p41),IV20=p0u113u158u133+1.0,
IV21=p0u148u159u148+1.0,IV22=p0u157u160u157+1.0,IV23=p0u9p42,
IV24=p0u10p42,IV25=p0p12,IV26=p0u11,
IV27=p0u12p42,IV28=p0u13,IV29=p0u14p42,
IV30=p0u15,IV31=p0u16,IV32=p0u17,
IV33=p0u18,IV34=p0u19,IV35=p0u20p42,
IV36=p0u21,IV37=p0u22,IV38=p0u23,
IV39=p0u24,IV40=p0u25,IV41=p0u26,
IV42=p0u27,IV43=p0u28,IV44=p0u29,
IV45=p0u30,IV46=p0u31,IV47=p0u32,
IV48=p0u33,IV49=p0u34,IV50=p0u35,
IV51=p0u36,IV52=p0u37,IV53=p0u38,
IV54=p0u39,IV55=p0u40,IV56=p0u41,
IV57=p0u42,IV58=p0u43,IV59=p0u44,
IV60=p0u45,IV61=p0u46,IV62=p0u47,
IV63=p0u48,IV64=p0u49,IV65=p0u50,
IV66=p0u51,IV67=p0u52,IV68=p0u53,
IV69=p0u54,IV70=p0u55,IV71=p0u56,
IV72=p0u57,IV73=p0u58,IV74=p0u59,
IV75=p0u60,IV76=p0u61,IV77=p0u62,
IV78=p0u158u113+1.0,IV79=p0u63,IV80=p0u64,
IV81=p0u8u148+1.0,IV82=p0u65,IV83=p0u66,
IV84=p0u67,IV85=p0u68p42,IV86=p0u69p42,
IV87=p0u160u157+1.0,IV88=p0u70,IV89=p0u71p42,
IV90=p50,IV91=p0u72p42,IV92=p0p46,
IV93=p0u180,IV94=p0p47,IV95=p0u181,
IV96=p0u182,IV97=p0u183,IV98=p0u184,
IV99=p0u185,IV100=p0u186,IV101=p0u187,
IV102=p0u188,IV103=p0u189,IV104=p0u190,
IV105=p0u191,IV106=p0u192,IV107=p0u193,
IV108=p0u194,IV109=p0u195,IV110=p0u196,
IV111=p0u197,IV112=p0u198,IV113=p0u199,
IV114=p0u200,IV115=p0u223,IV116=p0u224,
IV117=0,IV118=p0u221,IV119=p0u222,
IV120=p0p48,IV121=p0u202,IV122=p0u203,
IV123=p0u211(u161+u210)u220+1.0,IV124=p0u211u220(u161+u210)u220+1.0.

Table 3

List of fixed parameters (1/2).

p0Dilutionfactor0.6667p1S_TF7.658989e-12p2S_VII1.561404e-08
p3S_VIIa5.326683e-11p4S_X2.039697e-07p5S_IX9.096479e-08
p6S_II2.017022e-06p7S_VIII7.518441e-10p8S_V1.886433e-08
p9S_TFPI2.307784e-09p10S_ATIII2.661478e-06p11S_alpha1AT2.37676e-05
p12S_Tm9.79467e-09p13Kd2-15.04544p14Kd83.489801e-09
p15Kd92.426951e-09p16Kd102.535596e-07p17Kd11-18.43114
p18Kd11a1.602839e-09p19k426364809p20k616759672
p21k81.578925p22k932443880p23k101.828158
p24k112.486723p25k1715.61378p26k1917.88283
p27k21811283301p28k26b15.5222p29k270.3163996
p30k2821.5559p31k29136.4629p32k3030080707
p33k31104.459p34k3253068894p35k36240193650
p36k3988172.98p37Kog10-3.772776p38Kog80.2416168
p39Kog8m4.0979e-07p40kbu5014.02588p41Va_pre_ActofV-4.503533
p42WarfarinFactor0.5978258p43Veer11537.89p44Down289.12773
p45Bourin110.3116p46S_HCII1.646771e-06p47S_PCI8.728542e-08
p48S_vWF3.707884e-08p49kvWF1583672.2p50S_PL2.282184e-08
Table 4

List of fixed parameters (2/2).

u00u10u27.091038e-06u31.201881e-06u43.287149e-08
u50u69.586261e-07u74.885827e-10u80u95.867748e-08
u105.268007e-08u110u121.381180e-14u130u140
u150u160u170u180u190
u200u210u220u230u240
u250u260u270u280u290
u300u310u320u330u340
u350u360u370u380u390
u400u410u420u430u440
u450u460u470u480u490
u500u510u520u530u540
u550u560u570u580u590
u600u610u620u630u640
u650u660u670u680u690
u700u710u720u731.233638e+07u741.932636e+06
u756.253566e-10u765.787158e+07u775.551706e+07u781.350195e+06u796.886843e+06
u804.219812e+06u813.486538e-03u829.838915e+04u833.343605e-03u844.907052e+05
u851.659267e+04u862.034925e+07u872.463716u881.453219e+07u893.667853e-01
u906.113555e+04u917.604036e+05u925.642855e-03u935.850895e-04u949.693666e+01
u952.333402e+04u966.103863e-03u974.875274e-04u982.475065e+06u995.122565e+04
u1003.969542e-04u1018.620074e+05u1027.423331e-03u1034.225866e+07u1042.037410e+03
u1054.950986e+02u1063.683459e+02u1072.290561e+02u1086.109323e+07u1091.717579e+06
u1100u1110u1123.370790e-10u1135.122001e-02u1141.745986e-01
u1153.209826e-10u1163.498565e-10u1175.679843e+02u1182.771999e-06u1191.757158e-01
u1201.783598e-06u1215.259668e-10u1223.746471e-04u1232.113415e-06u1241.007405e+01
u1255.344848e+01u1261.395878e+02u1275.080033e+02u1281.981534e+05u1298.094526e+05
u1300u1315.222449e-03u1321.380312e+07u1331.210472e+08u1347.532941e-01
u1358.460765e-01u1363.101805e-03u1377.688052e-02u1383.924507u1391.159746e-01
u1402.106957e-01u1411.242754e+07u1423.635741e-02u1431.358760e+07u1444.299456e-02
u1452.809204e+07u1464.586732e-02u1474.930859e-01u1488.859077u1494.495039e+06
u1502.208813e-01u1514.651777e+06u1521.259095e-01u1538.571367e+02u1545.330477e+06
u1551.940336e-01u1565.136096e-01u1575.328625e-01u1580u1590
u1600u1610u1626.951241e+02u1634.685068e+02u1648.218390e+01
u1651.208968e+02u1669.538816e+03u1673.820788e-07u1683.268536e+04u1695.697953e-10
u1708.439507e+02u1714.546240e-09u1721.418792e+06u1731.333866e+06u1743.369624e-12
u1754.492474e+03u1767.736602e-10u1773.181825e+02u1781.850638e+01u1791.866119e-01
u1803.006009e-06u1811.994891e-11u1820u1830u1840
u1850u1860u1870u1880u1890
u1900u1910u1920u1930u1940
u1950u1960u1970u1980u1990
u2000u2011.884206u2020u2030u2042.268764e-04
u2056.094237e+04u2063.000000e-02u2072.686606e+04u2085.890622u2092.927487e-03
u2100u2111.616306u2126.691869e+07u2139.311524e-07u2141.575627e+06
u2155.279387e+06u2161.404290e+02u2171.741800e+04u2184.828415e+06u2195.983991e-01
u2201.879658e+01u2210u2220u2230u2240

And lastly, in Tables 3 and 4, we give a list of values for fixed parameters u and start values for parameters p to be varied, based on [6].

The measurements we use throughout the paper were taken from [15, Figure 7a]. We use the curve corresponding to the case of platelet poor plasma with 10 nM Thrombomodelin initial dosage. The measured output is

y(t)=x29(t)+1.2x48(t).

The total Thrombin is given as the weighted sum IIa+1.2mIIa.

References

[1] A. Arenas, E. Omodei and M. Brashears, A mechanistic model of human recall of social network structure and relationship affect, Sci. Rep. 7 (2017), Article No. 17133. Search in Google Scholar

[2] F. Baermann, NN-Tool, http://www.nntool.de/Englisch/index_engl.html. Search in Google Scholar

[3] A. R. Barron, Approximation and estimation bounds for artificial neural networks, Mach. Learn. 14.1 (1994), 115–133. 10.1016/B978-1-55860-213-7.50025-0Search in Google Scholar

[4] G. Bellu, M. P. Saccomani, S. Audoly and L. D’Angiò, DAISY: A new software tool to test global identifiability of biological and physiological systems, Comp. Methods Programs Biomed 88 (2007), 52–61. 10.1016/j.cmpb.2007.07.002Search in Google Scholar PubMed PubMed Central

[5] S. Brooks, A. Gelman, G. L. Jones and X.-L. Meng, Handbook of Markov chain Monte Carlo, Chapman & Hall/CRC Handb. Mod. Stat. Methods, CRC Press, Boca Raton, 2011. 10.1201/b10905Search in Google Scholar

[6] R. Burghaus, K. Coboeken, T. Gaub, C. Niederalt, A. Sensse, H.-U. Siegmund, W. Weiss, W. Mueck, T. Tanigawa and J. Lippert, Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban–an oral, direct Factor Xa inhibitor, Frontiers Physiol. 5 (2014), Article No. 417. Search in Google Scholar

[7] S. D. Cohen and A. C. Hindmarsh, CVODE, A stiff/nonstiff ODE Solver in C., Comput. Phys. 10 (1996), 138–143. 10.1063/1.4822377Search in Google Scholar

[8] M. K. Cowles and B. P. Carlin, Markov chain Monte Carlo convergence diagnostics: A comparative review, J. Amer. Statist. Assoc. 91 (1996), no. 434, 883–904. 10.1080/01621459.1996.10476956Search in Google Scholar

[9] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (1989), no. 4, 303–314. 10.1007/BF02551274Search in Google Scholar

[10] A. Gelman and D. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci. 7 (1992), 457–472. 10.1214/ss/1177011136Search in Google Scholar

[11] M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011), no. 2, 123–214. 10.1111/j.1467-9868.2010.00765.xSearch in Google Scholar

[12] A. Griewank and A. Walther, Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2008. 10.1137/1.9780898717761Search in Google Scholar

[13] H. Haario, E. Saksman and J. Tamminen, An adaptive Metropolis algorithm, Bernoulli 7 (2001), no. 2, 223–242. 10.2307/3318737Search in Google Scholar

[14] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970), no. 1, 97–109. 10.1093/biomet/57.1.97Search in Google Scholar

[15] H. C. Hemker, P. Giesen, R. Al Dieri, V. Regnault, E. de Smedt, R. Wagenvoord, T. Lecompte and S. Béguin, Calibrated automated thrombin generation measurement in clotting plasma, Pathophysiol. Haemost Thromb 33 (2003), 4–15. 10.1159/000071636Search in Google Scholar PubMed

[16] M. Krauss, Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification, Silico Pharmacology 1 (2013), 10.1186/2193-9616-1-6. 10.1186/2193-9616-1-6Search in Google Scholar PubMed PubMed Central

[17] M. Krauss, Bayesian population physiologically-based pharmacokinetic (PBPK) approach for a physiologically realistic characterization of interindividual variability in clinically relevant populations, PLoS One 10 (2015), Article No. e0139423. 10.1371/journal.pone.0139423Search in Google Scholar PubMed PubMed Central

[18] C. Müller, F. Weysser, T. Mrziglod and A. Schuppert, Markov-Chain Monte-Carlo methods and non-identifiabilities, Monte Carlo Methods Appl. 24 (2018), no. 3, 203–214. 10.1515/mcma-2018-0018Search in Google Scholar

[19] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller and J. Timmer, Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics 25 (2009), no. 15, 1923–1929. 10.1093/bioinformatics/btp358Search in Google Scholar PubMed

[20] G. O. Roberts and J. S. Rosenthal, Optimal scaling for various Metropolis-Hastings algorithms, Statist. Sci. 16 (2001), no. 4, 351–367. 10.1214/ss/1015346320Search in Google Scholar

[21] S. Shammas, A mechanistic model of tau amyloid aggregation based on direct observation of oligomers, Nature Commun. 6 (2015), Article No. 7025. 10.1038/ncomms8025Search in Google Scholar PubMed PubMed Central

Received: 2020-02-07
Revised: 2020-03-23
Published Online: 2020-04-15
Published in Print: 2020-06-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2020-2060/html
Scroll to top button