Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 17, 2020

Multilevel Monte Carlo by using the Halton sequence

  • Shady Ahmed Nagy , Mohamed A. El-Beltagy ORCID logo EMAIL logo and Mohamed Wafa

Abstract

Monte Carlo (MC) simulation depends on pseudo-random numbers. The generation of these numbers is examined in connection with the Brownian motion. We present the low discrepancy sequence known as Halton sequence that generates different stochastic samples in an equally distributed form. This will increase the convergence and accuracy using the generated different samples in the Multilevel Monte Carlo method (MLMC). We compare algorithms by using a pseudo-random generator and a random generator depending on a Halton sequence. The computational cost for different stochastic differential equations increases in a standard MC technique. It will be highly reduced using a Halton sequence, especially in multiplicative stochastic differential equations.

MSC 2010: 81T80; 34k28; 60-XX

References

[1] W. T. Coffey, Development and application of the theory of Brownian motion, Adv. Chem. Phys. (1985), 10.1002/9780470142875.ch2. 10.1002/9780470142875.ch2Search in Google Scholar

[2] A. Einstein, Investigations on the Theory of the Brownian Movement, Dutton, New York, 1926. Search in Google Scholar

[3] H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), no. 4, 337–351. 10.4064/aa-41-4-337-351Search in Google Scholar

[4] A. Friedman, Stochastic Differential Equations and Applications. Vol. 2, Probab. Math. Statist. 28, Academic Press, New York, 1976. 10.1016/B978-0-12-268202-5.50014-2Search in Google Scholar

[5] I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and Their Applications (in Russian), Naukova Dumka, Kiev, 1982. Search in Google Scholar

[6] M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607–617. 10.1287/opre.1070.0496Search in Google Scholar

[7] M. B. Giles, Multilevel Monte Carlo methods, Acta Numer. 24 (2015), 259–328. 10.1007/978-3-642-41095-6_4Search in Google Scholar

[8] A.-L. Haji-Ali, F. Nobile and R. Tempone, Multi-index Monte Carlo: When sparsity meets sampling, Numer. Math. 132 (2016), no. 4, 767–806. 10.1007/s00211-015-0734-5Search in Google Scholar

[9] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84–90. 10.1007/BF01386213Search in Google Scholar

[10] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (N. Y.) 23, Springer, Berlin, 1992. 10.1007/978-3-662-12616-5Search in Google Scholar

[11] J. Matoušek, On the L2-discrepancy for anchored boxes, J. Complexity 14 (1998), no. 4, 527–556. 10.1006/jcom.1998.0489Search in Google Scholar

[12] W. J. Morokoff and R. E. Caflisch, Quasi-random sequences and their discrepancies, SIAM J. Sci. Comput. 15 (1994), no. 6, 1251–1279. 10.1137/0915077Search in Google Scholar

[13] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), no. 4, 273–337. 10.1007/BF01294651Search in Google Scholar

[14] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conf. Ser. in Appl. Math. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992. 10.1137/1.9781611970081Search in Google Scholar

[15] B. Øksendal, Stochastic Differential Equations, 6th ed., Universitext, Springer, Berlin, 2003. 10.1007/978-3-642-14394-6Search in Google Scholar

[16] I. M. Sobol, The distribution of points in a cube and the approximate evaluation of integrals, USSR Comput. Math. Math. Phys. 7 (1964), 86–112. 10.1016/0041-5553(67)90144-9Search in Google Scholar

[17] J. M. Steele, Stochastic Calculus and Financial Applications, Appl. Math. (N. Y.) 45, Springer, New York, 2001. 10.1007/978-1-4684-9305-4Search in Google Scholar

[18] O. Vasciek, An equilibrium characterization of the term structure, J. Financial Econ. 5 (1977), no. 2, 177–188. 10.1016/0304-405X(77)90016-2Search in Google Scholar

[19] P. F. Verhulst, Recherché mathématiques sur la loi d’accroissement de la population, Nouv. Acad. Roy. Sci. Belles-Lettres Bruxelles 18 (1845), 1–41. Search in Google Scholar

[20] P. F. Verhulst, Deuxiéme mémoire sur la loi d’accroissement de la population, Mém. Acad. Roy. Sci. Lettres Beaux-Arts Belgique 20 (1847), 1–32. Search in Google Scholar

Received: 2018-10-14
Accepted: 2020-04-01
Published Online: 2020-04-17
Published in Print: 2020-09-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2020-2065/html
Scroll to top button