Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 15, 2022

Estimation of steady-state quantities of an HMM with some rarely generated emissions

  • Az-eddine Zakrad EMAIL logo and Abdelaziz Nasroallah

Abstract

We propose to apply the importance sampling and the antithetic variates statistical techniques to estimate steady-state quantities of an Hidden Markov chain (HMM) of which certain emissions are rarely generated. Compared to standard Monte Carlo simulation, the use of these techniques, allow a significant reduction in simulation time. Numerical Monte Carlo examples are studied to show the usefulness and efficiency of the proposed approach.

MSC 2010: P60J10; 65C05; 62G05

Acknowledgements

The authors wish to express their sincere gratitude to the Editor-in-Chief for following up on the paper, and gratefully acknowledge the many helpful suggestions and valuable comments of the Reviewers that lead to an improved paper.

References

[1] K. Aas, L. Eikvil and R. B. Huseby, Applications of hidden Markov chains in image analysis, Pattern Recognit. 32 (1999), no. 4, 703–713. 10.1016/S0031-3203(98)00109-5Search in Google Scholar

[2] T. Adam, R. Langrock and C. H. Weiß, Penalized estimation of flexible hidden Markov models for time series of counts, Metron 77 (2019), no. 2, 87–104. 10.1007/s40300-019-00153-6Search in Google Scholar

[3] J. Baker, The DRAGON system–An overview, IEEE Trans Acous. Speech Signal Process. 23 (1975), 24–29. 10.1109/TASSP.1975.1162650Search in Google Scholar

[4] F. Bartolucci, A. Farcomeni and F. Pennoni, Latent Markov Models for Longitudinal Data, CRC Press, Boca Raton, 2013. 10.1201/b13246Search in Google Scholar

[5] F. Bartolucci, S. Pandolfi and F. Pennoni, LMest: An R package for latent Markov models for longitudinal categorical data, J. Stat. Softw. 8 (2017), 1–38. 10.18637/jss.v081.i04Search in Google Scholar

[6] L. E. Baum, An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes, Inequalities III: Proceedings of the Third Symposium on Inequalities, Academic Press, New York (1972), 1–8. Search in Google Scholar

[7] L. E. Baum and J. A. Eagon, An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology, Bull. Amer. Math. Soc. 73 (1967), 360–363. 10.1090/S0002-9904-1967-11751-8Search in Google Scholar

[8] L. E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Statist. 37 (1966), 1554–1563. 10.1214/aoms/1177699147Search in Google Scholar

[9] L. E. Baum, T. Petrie, G. Soules and N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Statist. 41 (1970), 164–171. 10.1214/aoms/1177697196Search in Google Scholar

[10] L. E. Baum and G. R. Sell, Growth transformations for functions on manifolds, Pacific J. Math. 27 (1968), 211–227. 10.2140/pjm.1968.27.211Search in Google Scholar

[11] M. Bebbington, Identifying volcanic regimes using hidden Markov models, Geophys. J. Int. 171 (2007), no. 2, 921–942. 10.1111/j.1365-246X.2007.03559.xSearch in Google Scholar

[12] R. Billinton and A. Jonnavithula, Composite system adequacy assessment using sequential Monte Carlo simulation with variance reduction techniques, IEEE Proc. 144 (1997), 1–6. 10.1049/ip-gtd:19970763Search in Google Scholar

[13] M. Bishop and E. Thompson, Maximum likelihood alignment of DNA sequences, J. Molecular Biol. 190 (1986), no. 2, 159–165. 10.1016/0022-2836(86)90289-5Search in Google Scholar

[14] M. Y. Boudaren, E. Monfrini and W. Pieczynski, Unsupervised segmentation of random discrete data hidden with switching noise distributions, IEEE Signal Process. Lett. 19 (2012), no. 10, 619–622. 10.1109/LSP.2012.2209639Search in Google Scholar

[15] N. Bouleau, Processus stochastiques et applications, Hermann, Paris, 2000. Search in Google Scholar

[16] P. Brémaud, Markov Chains, Texts Appl. Math. 31, Springer, New York, 1999. 10.1007/978-1-4757-3124-8Search in Google Scholar

[17] H. Bunke and T. Caelli, Hidden Markov Models: Applications in Computer Vision, World Scientific, Singapore, 2001. 10.1142/4648Search in Google Scholar

[18] Q. Chen and L. Mili, Composite power system vulnerability evaluation to cascading failures using importance sampling and antithetic variates, IEEE Trans. Power Syst. 28 (2013), no. 3, 2321–2330. 10.1109/TPWRS.2013.2238258Search in Google Scholar

[19] W. Cho, S. W. Lee and J. H. Kim, Modeling and recognition of cursive words with hidden Markov models, Pattern Recognit. 28 (1995), no. 12, 1941–1953. 10.1016/0031-3203(95)00041-0Search in Google Scholar

[20] G. Churchill, Hidden Markov chains and the analysis of genome structure, Comput. Chem. 16 (1992), no. 2, 107–115. 10.1016/0097-8485(92)80037-ZSearch in Google Scholar

[21] M. DelRose, C. Wagner and P. Frederick, Evidence feed forward hidden Markov model: A new type of hidden Markov model, Int. J. Artificial Intelligence Appl. 2 (2011), 1–19. 10.5121/ijaia.2011.2101Search in Google Scholar

[22] S. L. DeRuiter, R. Langrock, T. Skirbutas, J. A. Goldbogen, J. Calambokidis, A. S. Friedlaender and B. L. Southall, A multivariate mixed hidden Markov model for blue whale behaviour and responses to sound exposure, Ann. Appl. Stat. 11 (2017), no. 1, 362–392. 10.1214/16-AOAS1008Search in Google Scholar

[23] R. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University, Cambridge, 1998. 10.1017/CBO9780511790492Search in Google Scholar

[24] R. Durrett, Probability Models for DNA Sequence Evolution, Probab. Appl. (New York), Springer, New York, 2002. 10.1007/978-1-4757-6285-3Search in Google Scholar

[25] S. N. Ethier and T. G. Kurtz, Markov Processes, Wiley Ser. Probab. Math. Stat., John Wiley & Sons, New York, 1986. 10.1002/9780470316658Search in Google Scholar

[26] W. J. Ewens, Mathematical Population Genetics. I. Theoretical Introduction, 2nd ed., Interdiscip. Appl. Math. 27, Springer, New York, 2004. 10.1007/978-0-387-21822-9Search in Google Scholar

[27] A. Gupta and B. Dhingra, Stock market prediction using hidden Markov models, Students Conference on Engineering and Systems, IEEE Press, Piscataway (2012), 1–4. 10.1109/SCES.2012.6199099Search in Google Scholar

[28] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, John Wiley and Sons, New York, 1964. 10.1007/978-94-009-5819-7Search in Google Scholar

[29] D. He and C. H. Chen, Antithetic Variates, Wiley, New York, 2011. 10.1002/9780470400531.eorms0031Search in Google Scholar

[30] X. Huang, A. Acero, H.-W. Hon and R. Reddy, Spoken Language Processing: A Guide to Theory, Algorithm, and System Development. Vol. 95, Prentice Hall, Upper Saddle River, 2001. Search in Google Scholar

[31] X. Huang, Y. Ariki and M. A. Jack, Hidden Markov Models for Speech Recognition, Edinburgh University, Edinburgh, 1990. Search in Google Scholar

[32] F. Jelinek, L. Bahl and R. Mercer, Design of a linguistic statistical decoder for the recognition of continuous speech, IEEE Trans. Inform. Theory 21 (1975), no. 3, 250–256. 10.1109/TIT.1975.1055384Search in Google Scholar

[33] J. H. Matis and T. R. Kiffe, Stochastic Population Models. A Compartmental Perspective, Lect. Notes Stat. 145, Springer, New York, 2000. 10.1007/978-1-4612-1244-7Search in Google Scholar

[34] A. Nasroallah, Simulation de chaînes de Markov et techniques de réduction de la variance, Thèse de Doctorat IRISA, Rennes, 1991. Search in Google Scholar

[35] O. Netzer, J. M. Lattin and V. Srinivasan, A hidden Markov model of customer relationship dynamics, Marketing Sci. 27.2 (2008), 185–204. 10.1287/mksc.1070.0294Search in Google Scholar

[36] J. R. Norris, Markov Chains, Camb. Ser. Stat. Probab. Math. 2, Cambridge University, Cambridge, 1998. Search in Google Scholar

[37] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, IEEE Proc. 77 (1989), no. 2, 257–286. 10.1016/B978-0-08-051584-7.50027-9Search in Google Scholar

[38] S. M. Ross, Extending simulation uses of antithetic variables: Partially monotone functions, random permutations, and random subsets, Math. Methods Oper. Res. 62 (2005), no. 3, 351–356. 10.1007/s00186-005-0038-0Search in Google Scholar

[39] R. Y. Rubinstein, Simulation and the Monte Carlo Method, John Wiley & Sons, New York, 1981. 10.1002/9780470316511Search in Google Scholar

[40] P. C. Sotirios and Y. Demiris, A reservoir-driven non-stationary hidden Markov model, Pattern Recogn. 45 (2012), no. 11, 3985–3996. 10.1016/j.patcog.2012.04.018Search in Google Scholar

[41] P. C. Sotirios and K. Dimitrios, Visual workflow recognition using a variational Bayesian treatment of multistream fused hidden Markov models, IEEE Trans. Circuits Syst. Video Technol. 22 (2012), no. 7, 1076–1086. 10.1109/TCSVT.2012.2189795Search in Google Scholar

[42] R. L. Stratonovič, Conditional Markov processes, Theory Probab. Appl. 5 (1960), 156–178. 10.1137/1105015Search in Google Scholar

[43] B. Tuffin, Variance reduction applied to product form multiclass queuing networks, ACM Trans. Model. Comput. Simul. 7 (1997), no. 4, 478–500. 10.1145/268403.268419Search in Google Scholar

[44] M. N. M. van Lieshout, Markov Point Processes and Their Applications, Imperial College Press, London, 2000. 10.1142/p060Search in Google Scholar

[45] C. J. Wellekens, J. Kangasharju and C. Milesi, The use of meta-HMM in multi-stream HMM training for automatic speech recognition, Proceedings of the 5th International Conference on Spoken Language, ISCA, Sydney (1998), 2991–2994. 10.21437/ICSLP.1998-193Search in Google Scholar

[46] J. R. Wilson, Proof of the antithetic-variates theorem for unbounded functions, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 3, 477–479. 10.1017/S0305004100056334Search in Google Scholar

[47] B. Ycart, Modèles et algorithmes Markoviens, Math. Appl.(Berlin) 39, Springer, Berlin, 2002. Search in Google Scholar

Received: 2021-08-03
Revised: 2022-01-18
Accepted: 2022-01-28
Published Online: 2022-02-15
Published in Print: 2022-03-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2022-2103/html
Scroll to top button