Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 15, 2022

Recursive regression estimation based on the two-time-scale stochastic approximation method and Bernstein polynomials

  • Yousri Slaoui ORCID logo EMAIL logo and Salima Helali

Abstract

In this paper, we propose a recursive estimators of the regression function based on the two-time-scale stochastic approximation algorithms and the Bernstein polynomials. We study the asymptotic properties of this estimators. We compare the proposed estimators with the classic regression estimator using the Bernstein polynomial defined by Tenbusch. Results showed that, our proposed recursive estimators can overcome the problem of the edges associated with kernel regression estimation with a compact support. The proposed recursive two-time-scale estimators are compared to the non-recursive estimator introduced by Tenbusch and the performance of the two estimators are illustrated via simulations as well as two real datasets.

MSC 2010: 62G08; 62L20; 65D10

References

[1] G. J. Babu, A. J. Canty and Y. P. Chaubey, Application of Bernstein polynomials for smooth estimation of a distribution and density function, J. Statist. Plann. Inference 105 (2002), no. 2, 377–392. 10.1016/S0378-3758(01)00265-8Search in Google Scholar

[2] S. Bhatnagar, M. C. Fu, S. I. Marcus and S. Bathnagar, Two timescale algorithms for simulation optimization of hidden Markov models, IEEE Trans. 3 (2001), 245–258. 10.1080/07408170108936826Search in Google Scholar

[3] V. S. Borkar, Stochastic approximation with two time scales, Systems Control Lett. 29 (1997), no. 5, 291–294. 10.1016/S0167-6911(97)90015-3Search in Google Scholar

[4] M. Duflo, Random Iterative Models, Appl. Math. (New York) 34, Springer, Berlin, 1997. Search in Google Scholar

[5] R. L. Eubank, Spline Smoothing and Nonparametric Regression, Stat. Textb. Monogr. 90, Marcel Dekker, New York, 1988. Search in Google Scholar

[6] J. Galambos and E. Seneta, Regularly varying sequences, Proc. Amer. Math. Soc. 41 (1973), 110–116. 10.1090/S0002-9939-1973-0323963-5Search in Google Scholar

[7] S. Ghosal, Convergence rates for density estimation with Bernstein polynomials, Ann. Statist. 29 (2001), no. 5, 1264–1280. 10.1214/aos/1013203453Search in Google Scholar

[8] W. Härdle, Applied Nonparametric Regression, Econom. Soc. Monogr. 19, Cambridge University, Cambridge, 1990. 10.1017/CCOL0521382483Search in Google Scholar

[9] W. Härdle, M. Müller, S. Sperlich and A. Werwatz, Nonparametric and Semiparametric Models, Springer Ser. Statist., Springer, New York, 2004. 10.1007/978-3-642-17146-8Search in Google Scholar

[10] T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, Monogr. Statist. Appl. Probab. 43, Chapman and Hall, London, 1990. Search in Google Scholar

[11] G. Igarashi and Y. Kakizawa, On improving convergence rate of Bernstein polynomial density estimator, J. Nonparametr. Stat. 26 (2014), no. 1, 61–84. 10.1080/10485252.2013.827195Search in Google Scholar

[12] A. Jmaei, Y. Slaoui and W. Dellagi, Recursive distribution estimator defined by stochastic approximation method using Bernstein polynomials, J. Nonparametr. Stat. 29 (2017), no. 4, 792–805. 10.1080/10485252.2017.1369538Search in Google Scholar

[13] Y. Kakizawa, Bernstein polynomial probability density estimation, J. Nonparametr. Stat. 16 (2004), no. 5, 709–729. 10.1080/1048525042000191486Search in Google Scholar

[14] Y. Kakizawa, A note on generalized Bernstein polynomial density estimators, Stat. Methodol. 8 (2011), no. 2, 136–153. 10.1016/j.stamet.2010.08.004Search in Google Scholar

[15] S. Khardani and Y. Slaoui, Recursive kernel density estimation and optimal bandwidth selection under α: Mixing data, J. Stat. Theory Pract. 13 (2019), no. 2, Paper No. 36. 10.1007/s42519-018-0031-6Search in Google Scholar

[16] J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann. Math. Statist. 23 (1952), 462–466. 10.1007/978-1-4613-8505-9_4Search in Google Scholar

[17] V. R. Konda and V. S. Borkar, Actor-critic-type learning algorithms for Markov decision processes, SIAM J. Control Optim. 38 (1999), no. 1, 94–123. 10.1137/S036301299731669XSearch in Google Scholar

[18] V. R. Konda and J. N. Tsitsiklis, Convergence rate of linear two-time-scale stochastic approximation, Ann. Appl. Probab. 14 (2004), no. 2, 796–819. 10.1214/105051604000000116Search in Google Scholar

[19] A. Leblanc, A bias-reduced approach to density estimation using Bernstein polynomials, J. Nonparametr. Stat. 22 (2010), no. 3–4, 459–475. 10.1080/10485250903318107Search in Google Scholar

[20] A. Leblanc, On estimating distribution functions using Bernstein polynomials, Ann. Inst. Statist. Math. 64 (2012), no. 5, 919–943. 10.1007/s10463-011-0339-4Search in Google Scholar

[21] A. Leblanc, On the boundary properties of Bernstein polynomial estimators of density and distribution functions, J. Statist. Plann. Inference 142 (2012), no. 10, 2762–2778. 10.1016/j.jspi.2012.03.016Search in Google Scholar

[22] A. Mokkadem and M. Pelletier, Convergence rate and averaging of nonlinear two-time-scale stochastic approximation algorithms, Ann. Appl. Probab. 16 (2006), no. 3, 1671–1702. 10.1214/105051606000000448Search in Google Scholar

[23] A. Mokkadem and M. Pelletier, A generalization of the averaging procedure: The use of two-time-scale algorithms, SIAM J. Control Optim. 49 (2011), no. 4, 1523–1543. 10.1137/080718395Search in Google Scholar

[24] A. Mokkadem, M. Pelletier and Y. Slaoui, Revisiting Révész’s stochastic approximation method for the estimation of a regression function, ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 63–114. Search in Google Scholar

[25] H.-G. Müller, Nonparametric Regression Analysis of Longitudinal Data, Lect. Notes Stat. 46, Springer, Berlin, 1988. 10.1007/978-1-4612-3926-0Search in Google Scholar

[26] E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 10 (1964), 186–190. 10.1137/1109020Search in Google Scholar

[27] B. L. S. Prakasa Rao, Estimation of distribution and density functions by generalized Bernstein polynomials, Indian J. Pure Appl. Math. 36 (2005), no. 2, 63–88. Search in Google Scholar

[28] P. Révész, Robbins–Monro procedure in a Hilbert space and its application in the theory of learning processes. I, Studia Sci. Math. Hungar. 8 (1973), 391–398. Search in Google Scholar

[29] Y. Slaoui, Application des méhodes d’approximations stochastiques à l’estimation de la densité et de la régression, Doctoral dissertation, Université de Versailles-Saint Quentin en Yvelines, 2006. Search in Google Scholar

[30] Y. Slaoui, Large and moderate deviation principles for recursive kernel density estimators defined by stochastic approximation method, Serdica Math. J. 39 (2013), no. 1, 53–82. Search in Google Scholar

[31] Y. Slaoui, Moderate deviation principles for recursive regression estimators defined by stochastic approximation method, Int. J. Math. Stat. 16 (2015), no. 2, 51–60. Search in Google Scholar

[32] Y. Slaoui, Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method, Stat. Neerl. 69 (2015), no. 4, 483–509. 10.1111/stan.12069Search in Google Scholar

[33] Y. Slaoui, Optimal bandwidth selection for semi-recursive kernel regression estimators, Stat. Interface 9 (2016), no. 3, 375–388. 10.4310/SII.2016.v9.n3.a11Search in Google Scholar

[34] Y. Slaoui, Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data, J. Multivariate Anal. 173 (2019), 494–511. 10.1016/j.jmva.2019.04.009Search in Google Scholar

[35] Y. Slaoui, Recursive nonparametric regression estimation for independent functional data, Statist. Sinica 30 (2020), no. 1, 417–437. 10.5705/ss.202018.0069Search in Google Scholar

[36] Y. Slaoui and A. Jmaei, Recursive density estimators based on Robbins–Monro’s scheme and using Bernstein polynomials, Stat. Interface 12 (2019), no. 3, 439–455. 10.4310/SII.2019.v12.n3.a8Search in Google Scholar

[37] A. Tenbusch, Two-dimensional Bernstein polynomial density estimators, Metrika 41 (1994), no. 3–4, 233–253. 10.1007/BF01895321Search in Google Scholar

[38] R. A. Vitale, Bernstein polynomial approach to density function estimation, Statistical Inference and Related Topics. Vol. 2, Indiana University, Bloomington (1975), 87–99. 10.1016/B978-0-12-568002-8.50011-2Search in Google Scholar

[39] G. S. Watson, Smooth regression analysis, Sankhyā Ser. A 26 (1964), 359–372. Search in Google Scholar

[40] J. M. Wooldridge, Basic Regression Analysis with Time Series Data. Introductory Econometrics: A Modern Approach, South-Western College, Cincinnati, 2000. Search in Google Scholar

Received: 2021-03-10
Revised: 2022-01-25
Accepted: 2022-01-30
Published Online: 2022-02-15
Published in Print: 2022-03-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2022-2104/html
Scroll to top button