Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 26, 2022

Berry–Esseen inequalities for the fractional Black–Karasinski model of term structure of interest rates

  • Jaya P. N. Bishwal EMAIL logo

Abstract

The Black–Karasinski model is a one-factor non-affine interest rate model as it describes interest rate movements driven by a single source of randomness and the drift function is a nonlinear function of the interest rate. The drift parameters represent the level and the speed of mean reversion of the interest rate. It belongs to the class of no-arbitrage models. The paper introduces some new approximate minimum contrast estimators of the mean reversion speed parameter in the model based on discretely sampled data which are efficient and studies their asymptotic distributional properties with precise rates of convergence.

References

[1] B. Bercu, L. Coutin and N. Savy, Sharp large deviations for the fractional Ornstein–Uhlenbeck process, Theory Probab. Appl. 46 (2009), no. 1, 1–19. 10.1137/S0040585X97978737Search in Google Scholar

[2] T. R. Bielecki and M. Rutkowski, Credit Risk: Modelling, Valuation and Hedging, Springer Finance, Springer, Berlin, 2004. 10.1007/978-3-662-04821-4Search in Google Scholar

[3] J. P. N. Bishwal, Rates of weak convergence of approximate minimum contrast estimators for the discretely observed Ornstein–Uhlenbeck process, Statist. Probab. Lett. 76 (2006), no. 13, 1397–1409. 10.1016/j.spl.2006.02.010Search in Google Scholar

[4] J. P. N. Bishwal, Parameter Estimation in Stochastic Differential Equations, Lecture Notes in Math. 1923, Springer, Berlin, 2008. 10.1007/978-3-540-74448-1Search in Google Scholar

[5] J. P. N. Bishwal, Berry–Esseen inequalities for discretely observed diffusions, Monte Carlo Methods Appl. 15 (2009), no. 3, 229–239. 10.1515/MCMA.2009.013Search in Google Scholar

[6] J. P. N. Bishwal, Minimum contrast estimation in fractional Ornstein–Uhlenbeck process: Continuous and discrete sampling, Fract. Calc. Appl. Anal. 14 (2011), no. 3, 375–410. 10.2478/s13540-011-0024-6Search in Google Scholar

[7] J. P. N. Bishwal, A new algorithm for approximate maximum likelihood estimation in sub-fractional Chan–Karolyi–Longstaff–Sanders model, Asian J. Probab. Stat. 13 (2021), no. 3, 62–88. 10.9734/ajpas/2021/v13i330311Search in Google Scholar

[8] J. P. N. Bishwal, Parameter Estimation in Stochastic Volatility Models, Springer Nature, Cham, 2022, to appear. 10.1007/978-3-031-03861-7Search in Google Scholar

[9] D. Brigo and F. Mercurio, Interest Rate Models—Theory and Practice, Springer Finance, Springer, Berlin, 2001. 10.1007/978-3-662-04553-4Search in Google Scholar

[10] J. C. Cox, J. E. Ingersoll, Jr. and S. A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985), no. 2, 385–407. 10.1142/9789812701022_0005Search in Google Scholar

[11] W. Feller, An Introduction to Probability Theory and its Applications. Vol. I, John Wiley & Sons, New York, 1957. Search in Google Scholar

[12] D. Florens-Landais and H. Pham, Large deviations in estimation of an Ornstein–Uhlenbeck model, J. Appl. Probab. 36 (1999), no. 1, 60–77. 10.1239/jap/1032374229Search in Google Scholar

[13] W. A. Fuller, Introduction to Statistical Time Series, 2nd ed., Wiley Ser. Probab. Stat., John Wiley & Sons, New York, 1996. 10.1002/9780470316917Search in Google Scholar

[14] P. Glasserman, Monte Carlo Methods in Financial Engineering, Appl. Math. (New York) 53, Springer, New York, 2004. 10.1007/978-0-387-21617-1Search in Google Scholar

[15] C. Graham and D. Talay, Stochastic Simulation and Monte Carlo Methods, Springer, Heidelberg, 2013. 10.1007/978-3-642-39363-1Search in Google Scholar

[16] B. Horvath, A. Jacquier and C. Turfus, Analytical option prices for the Black–Karasinski short rate model, SSRN (2018), 10.2139/ssrn.3253833. 10.2139/ssrn.3253833Search in Google Scholar

[17] S. M. Iacus, Simulation and Inference for Stochastic Differential Equations, Springer, New York, 2008. 10.1007/978-0-387-75839-8Search in Google Scholar

[18] S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic Processes with YUIMA, Springer, Cham, 2018. 10.1007/978-3-319-55569-0Search in Google Scholar

[19] M. L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein–Uhlenbeck type process, Stat. Inference Stoch. Process. 5 (2002), no. 3, 229–248. 10.1023/A:1021220818545Search in Google Scholar

[20] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 2nd ed., Appl. Math. (New York) 23, Springer, Berlin, 1995. Search in Google Scholar

[21] P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Universitext, Springer, Berlin, 1994. 10.1007/978-3-642-57913-4Search in Google Scholar

[22] P. E. Kloeden, E. Platen, H. Schurz and M. Sørensen, On effects of discretization on estimators of drift parameters for diffusion processes, J. Appl. Probab. 33 (1996), no. 4, 1061–1076. 10.2307/3214986Search in Google Scholar

[23] R. Michel and J. Pfanzagl, The accuracy of the normal approximation for minimum contrast estimates, Z. Wahrscheinlichkeitstheorie Verw. Geb. 18 (1971), 73–84. 10.1007/BF00538488Search in Google Scholar

[24] G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Math. Appl. 313, Kluwer Academic, Dordrecht, 1995. 10.1007/978-94-015-8455-5Search in Google Scholar

[25] I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli 5 (1999), no. 4, 571–587. 10.2307/3318691Search in Google Scholar

[26] E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. 10.1007/978-3-642-13694-8Search in Google Scholar

[27] K. K. Sabelfeld, The approximate computation of Wiener path integrals by the Monte Carlo method (in Russian), Zh. Vychisl. Mat. i Mat. Fiz. 19 (1979), no. 1, 29–43. Search in Google Scholar

[28] K. Tanaka, Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process, Stat. Inference Stoch. Process. 16 (2013), no. 3, 173–192. 10.1007/s11203-013-9085-ySearch in Google Scholar

[29] C. A. Tudor and F. G. Viens, Statistical aspects of the fractional stochastic calculus, Ann. Statist. 35 (2007), no. 3, 1183–1212. 10.1214/009053606000001541Search in Google Scholar

Received: 2021-12-28
Revised: 2022-03-08
Accepted: 2022-03-14
Published Online: 2022-03-26
Published in Print: 2022-06-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2022-2111/html
Scroll to top button